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1 Introduction

Physics and geometry have been the two inseparable fields in our attempt of sys-
tematising intuitions we have about the structure of space and time. These two
interrelated fields yield a plethora of surprising results over the past decades. In
particular, quantum field theory (QFT) and knot theory have been brought together
in Edward Witten’s 1989 groundbreaking work, which was hugely motivated by the
two problems proposed by Michael Atiyah in the 1987 Hermann Weyl Symposium
[1]. The first problem was to give a physical interpretation to Donaldson theory.
The second problem was to find an intrinsically 3-dimensional definition of the Jones
polynomial of knot theory.

Donaldson theory [2] is essential to understanding geometry in four dimensions,
which is our physical dimension at least macroscopically. Using the moduli spaces of
solutions of the self-dual Yang-Mills equations, the theory addressed the issues related
to the natural topological invariants of a 4-manifold, namely the second homology
group and its intersection form. Its interpretation in terms of QFT was then shown
by Floer [3] and Witten [4].

Unlike the Donaldson theory, where its connection with QFT was not obvious,
the knot polynomials have been intimately connected with two dimensional many
body physics in a bewildering variety of ways, from solvable lattice models [5], solu-
tions of the Yang-Baxter equation [6] to conformal field theory [7–9]. The challenge
on the physical side has been to find the unifying themes for the diversity of the
knot and link polynomials. On the mathematical side, the puzzle was that the Jones
polynomial and its generalisations, despite being invariants of a 3-dimensional case,
have no intrinsically 3-dimensional definitions.

Now, what is a topological invariant? It is simply a term referred by mathemati-
cians to quantity computed from a manifold as a topological space (perhaps with
a smooth structure) without a choice of metric and is conserved under continuous
deformation (essentially invariant up to diffeomorphism). To physicists, the physical
meaning is really general covariant. Under the influence of relativity theories, one
would naturally describe a generally covariant QFT by introducing a metric (with
no a priori choice) and integrate all over the metric. This means that the theory
depends on the metric, which is a dynamical variable.

In the 1980s the seminal works of Donaldson, Jones, Floer, and Gromov [10]
brought about a different perspective in which general covariance can be realised
without the metric. It was exactly the theme in Witten’s 1989 paper [11] in which
a solvable 3-dimensional model where both general covariance and gauge invariance
are realised at the full quantum level. He proved that the Chern-Simons (CS) gauge
theory in the presence of Wilson loops leads to topological invariant of 3-manifolds
that are closely related to Jones polynomial of knots. In particular, he found a way
to work out the exact solution of CS theory in terms of a 2-dimensional conformal
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field theory (the Wess-Zumino-Witten (WZW) model), which is deeply related to
the knot and 3-manifold invariants. Since then both CS and knot theories have
been intensively studied, making important progress via applications of field theory
methods.

In this review, we will outline and (re-)construct Witten’s ideas. We first consider
the mathematical machinery needed to describe the results in Witten’s paper. In the
next section, we present the CS theory and its important properties. In the last
section we discuss a series of methods on solving CS theory on a 3-manifold and
consequently show how the knot and manifold invariants arise naturally from the
theory.

– 3 –



2 Mathematical Tools

In this section, we present some mathematical concepts which we will use in our dis-
cussion. The topics covered here are holonomy, homotopy, bundles and connections,
based on [12–14].

2.1 Holonomy

A loop is a fundamental mathematical object, which can be extended to knots and
links in later section.

Definition 1. A loop is a closed curve

C : S1 →M
t ∈ [0, 1] 7→ p = C(t), C(0) = C(1).

(2.1)

Consider a set of loops passing through a point p in the manifold M of dimension
n. We parallelly transport a vector X ∈ TpM round a loop C through p and end up
with a new vector XC ∈ TpM. This induces a linear transformation MC , which is
called the holonomy at p of the connection for the loop C(t), such that

MC : TpM→ TpM
X 7→ XC .

(2.2)

In other words, a holonomy is a measure of how much the initial and final values of a
vector (or more generally a spinor) differ after parallel transport round a loop. With a
coordinate basis {eµ = ∂

∂xµ
}, the vector X = Xµeµ transforms to XC = Xµ(MC)µ

νeν .
The set of all linear transformationsMC for all curves C through p then forms a group
Holp, the holonomy group at p. Clearly this is a subgroup of GL(n; R).

2.2 Homotopy

Now we present the concept of homotopy of loops (generally it can be applied for
paths and any topological spaces). Consider two discs in Fig. 1, one has a hole in it,
the other does not. The difference between these two discs are clearly illustrated by
the loops. In disk Y , any loops can be continuously shrunk to a point. In contrast,
some loops in disk X can be shrunk to a point while others cannot. For instance,
loop α in disk X cannot be shrunk to a point due to the existence of a hole in it.
The idea of homotopy comes in when we say a loop α is equivalent to β through a
continuous deformation.

Definition 2. Let α, β : I = [0, 1] → X ⊂ M be loops at x0 ∈ X. A homotopy
between α and β is a continuous map H : I × I → X such that

H(s, 0) = α(s), H(s, 1) = β(s) ∀s ∈ I,
H(0, t) = H(1, t) = x0 ∀t ∈ I.

(2.3)
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Figure 1: A disc with a hole (a) and without a hole (b). The hole in (a) prevents
the loop α from shrinking to a point.

α and β are said to be homotopic and we write the homotopic relation as
α ∼ β, which is an equivalence relation. The equivalence class of loops is denoted
by [α] and is called the homotopy class of α. Further, the set of homotopy classes
can be endowed with a group structure called the fundamental group.

Homotopy Groups

Definition 3. Let X be a topological space. The set of homotopy classes of loops
at x0 ∈ X, denoted by π1(X, x0), is called the first homotopy group (or more
commonly as the fundamental group) of X at x0. The product of homotopy
classes [α] and [β] is defined by [α] ∗ [β] = [α ∗ β].

Back to the disk example, notice that there is only one homotopy class associated
with Y , whereas each homotopy class in X is characterised by n ∈ Z, n being the
number of times the loop encircles the hole. This means that n < 0 if it winds
clockwise, n > 0 if counterclockwise, and n = 0 if the loop does not wind round the
hole. This set of integer Z is an additive group with a geometrical meaning: n + m

corresponds to going round the hole first n times and then m times.
We can also generalise homotopy to higher dimensional loops, for instance,

spheres Sn or tori Tn (n ≥ 2). These are known as the n-loops, which we define as fol-
lows. Recall that in the fundamental group, the boundary δI of I = [0, 1] is mapped
to the base point x0 ∈ X. We now consider a unit n-cube In = I × · · · × I (n ≥ 1)

as In = {(s1, . . . , sn)|0 ≤ si ≤ 1, 1 ≤ i ≤ n} and its boundary δIn = {(s1, . . . , sn) ∈
In | some si = 0 or 1}. Then an n-loop is a continuous map λ : In → X, where the
boundary δIn is mapped to a point x0 ∈ X. Naturally, homotopy extends to n-loops.

Definition 4. Let X be a topological space and α, β : In → X be n-loops at x0 ∈ X.
The maps α and β are said to be homotopic, α ∼ β, if there exists a continuous
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map F : In × I → X such that

H(s1, . . . , sn, 0) = α(s1, . . . , sn), H(s1, . . . , sn, 1) = β(s1, . . . , sn),

H(s1, . . . , sn, t) = x0,
(2.4)

for (s1, . . . , sn) ∈ δIn, t ∈ I.

Definition 5. Let X be a topological space. The set of homotopy classes of n-loops
(n ≥ 1) at x0 ∈ X, denoted by πn(X, x0), is called the nth homotopy group at x0.
πn(X, x0) is called the higher homotopy group if n ≥ 2.

2.3 Bundles

Many aspects of physics, such as general relativity and gauge theories, can be formu-
lated in the language of bundles. Bundles are also essential to the understanding of
topological properties of an underlying manifold. We would like to introduce some
notions of the bundle theory here. We assume for simplicity that all the structures
that we are going to discuss, such as manifolds and bundles, are smooth.

Definition 6. A (differentiable) bundle is a triple (E, π,M) which consists of the
following elements:

1. A differentiable manifold E called the total space.

2. A differentiable manifoldM called the base space.

3. A surjection π : E →M called the projection.

We often use a shorthand notation E
π−→ M or simply E to denote a bundle

(E, π,M). The definition of a bundle is quite nonrestrictive. For instance, the
empty function defines a bundle.

There are often additional structures to the notion of bundle. One of them is
called a fibre of a bundle.

Definition 7. For each p ∈ M, the fibre of a bundle E over p is the preimage of
the projection map π, i.e. Fp = π−1(p).

Definition 8. A section of the bundle E is a smooth map s : M → E such that
π ◦ s = idM.

This terminology comes from the geometric interpretation of the image s(M) ⊂ E

as a “cross section” of the bundle (total space) E. This notion of section generalises
that of functions and fields. It is obvious that s(p) = s|p is an element of Fp.

Definition 9. The space (set) of all smooth sections of a bundle E overM is denoted
by Γ(M, E) = {s ∈ C∞(M, E)|π ◦ s = idM}.
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For an open set U ⊂ M, we have a local section which is defined only on U

(s : U → E) and Γ(U,E) denotes the set of local sections on U . Notice that not all
fibre bundles admit global sections.

Given two bundles E1
π1−→ M1 and E2

π2−→ M2 with maps f : M1 → M2 and
g : E1 → E2 then the pair (f, g) is said to be a bundle morphism if the following
diagram commutes, i.e. π2 ◦ g = f ◦ π1.

Two bundles are said to be isomorphic if both (f, g) and (f−1, g−1) are bundle mor-
phisms where the inverse of (f, g) exists.

Definition 10. A fibre bundle is a quintuple (E, π,M, F,G) consisting of

1. A total space E, a projection map π, a base space M, together with a fibre
F , which is diffeomorphic to Fp overM (F ∼= Fp = π−1(p), p ∈M). The fibre
F is also a differentiable manifold and is sometimes called the standard fibre
or typical fibre.

2. A Lie group G called the structure group that acts on F on the left.

3. An atlas of charts (Ui, ϕi), i.e. a covering ofM by open sets Ui, where i indexes
the sets, with maps ϕi called local trivialisations of E over Ui ⊂M, such that
they are diffeomorphisms ϕi : π−1(Ui) → Ui × F , where ϕi(p) = (π(p), fi(p))

for p ∈ π−1(Ui) and fi : π−1(Ui)→ F .

4. The transition functions which are smooth maps fij : Ui ∩ Uj → G on
Ui ∩ Uj 6= ∅. With a diffeomorphism fi : Fp → F , the transition functions
fij ≡ fi ◦ f−1

j : F → F is an element of G.

The transition function fij is a cocycle which satisfies the conditions: fii = 1 and
fij = fikfkj for any point in Ui ∩ Uj ∩ Uk. If all the transition functions fij can be
taken to be identity maps, the fibre bundle E is called a trivial bundle. In other
words, E is trivial ifM is contractible to a point. This result is obtained using the
concepts of homotopy maps and pullback bundles as shown in [12]. A trivial bundle
is then (diffeomorphic to) a product space, i.e. E =M× F . A bundle which is not
trivial is called twisted.
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Vector Bundle

Let us choose a field F = either R or C and assume that all vector spaces and linear
maps are F-linear. Then we can define a vector bundle as follows.

Definition 11. A vector bundle of rank k is a fibre bundle E = M× V whose
fibre F is a vector space V = Fk and structure group is GL(k,F).

The base space is an m-dimensional manifold M. It is common to call k the rank
of fibre bundle (or fibre dimension), denoted by dim E, although the total space
E is (m + k)-dimensional. The transition functions belong to the structure group
GL(k,F) since it maps a vector space onto another vector space of the same dimension
isomorphically, i.e. fij : Ui ∩ Uj → Hom(V, V ) such that (pi, vi) = (pi, fijvj) for
pi ∈M, vi ∈ V .

There are many natural examples of vector bundles such as tangent bundle,
cotangent bundle (dual to tangent bundle) of a manifold and their tensor products.

Definition 12. A tangent bundle TM is a disjoint union of the tangent spaces
at all points ofM: TM =

⊔
p∈M TpM.

The tangent bundle is a smooth vector bundle of rank k over a k-dimensional manifold
M. HereM is the base of this bundle, and the 2k-dimensional manifold TM itself is
its total space. Its fibre is Fk and the structure group is GL(k,F). There is a natural
projection map π : TM→M which, for each x ∈ M, sends every vector X ∈ TM
to x. The preimages π−1(x) → TxM are the fibres of this bundle. Sections of TM
are the vector fields χ(M) onM, i.e. Γ(M, TM) = χ(M).

A vector bundle whose fibre is one-dimensional (F = R or C) is called a line
bundle. The structure group GL(1,R) = R−{0} or GL(1,C) = C−{0} is abelian.
A cylinder S1 × R is a trivial R-line bundle. A Möbius strip is also a R-line bundle.
One of the applications of vector bundles is seen in the (trivial) complex line bundle
L = R3×C which is associated with the non-relativistic quantum mechanics defined
on R3. The wavefunction ψ(x) is simply a section of L.

Principal Bundle

Definition 13. A smooth principal bundle P π−→M is a smooth fibre bundle whose
fibre F is diffeomorphic to a Lie group G, such that the structure group reduces to
G, acting on itself by left multiplication. We often call it a principal G-bundle
overM and denote it by P (M, G).

It is worth noting that:

1. For each p ∈ M, Fp is diffeomorphic to a Lie group G, but not in a canonical
way – in particular, there is no special element e ∈ Fp that we can call the
identity.
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2. Having reduced the structure group to G, we have chosen a special set of local
trivialisations ϕi : π−1(Ui) → Ui × G that are related to each other on each
fibre by the left action of G. This has the effect of inducing a natural fibre
preserving right action: E × G → E ((p, g) 7→ pg), defined in terms of any
local trivialisation ϕi(p) = (π(p), fi(p)) ∈ Ui × G by fi(pg) = fi(p)g. This is
independent of the choice because the right action of G on itself commutes with
the left action of the transition functions. Indeed, if p ∈ Fp for p ∈ Ui ∩ Uj,
then fj(pg) = fji(p)fi(pg) = fji(p)fi(p)g = fj(p)g.

This right action of G is both

1. free, i.e. without fixed points, meaning pg = p for some p ∈ E and g ∈ G if
and only if g is the identity, and

2. transitive, i.e. for any p, q ∈ Fp, there exists g ∈ G such that q = pg.

Therefore, we have an equivalent definition for principal bundles.

Definition 14. A smooth principal bundle is a smooth fibre bundle P π−→M together
with a Lie group G and a fibre preserving right action E × G → E which restricts
to each fibre freely and transitively.

For principal bundles there is a one-to-one correspondence between sections and
trivialisations. A principal bundle P is trivial (P =M×G) if and only if it admits
a smooth global section s :M→ P .

Associated Bundle

If two fibre bundles E and E ′, with the same base spaceM and structure group G,
also share the same trivialising neighbourhoods U and transition functions fij, then
they are each called an associated bundle with regard to the other. It is possible
to construct (up to isomorphism) a unique principal G-bundle associated to a given
fibre bundle and vice-versa.

In particular, if we are given a principal G-bundle P (M, G) overM and a left
action of G on a fibre F , ρ : G×F → F , then the fibre bundle E associated to P is,

E := P ×G F = P × F/G, (2.5)

where the quotient space collapses all points in the product space P × F which are
related by the right action of some g ∈ G on P and the right action of g−1 on
F . The associated bundle E is hence defined with an equivalence class in which
(p, f) ∼ (p · g, ρ(g−1, f)), for all (p, f) ∈ (P, F ) and all g ∈ G.
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Frame Bundle

Moreover, we can define an associated bundle called the frame bundle.

Definition 15. A (local) frame over an open set U ⊂ M is an ordered set
(e1, . . . , ek) of smooth sections ei ∈ Γ(U,E) which span each fibre Fp for p ∈ U .
Equivalently, a local frame can be viewed as a linear isomorphism from U to Fp.
Restricting to a single fibre, a frame on Fp is simply an ordered basis of Fp. The
set of all frames is hence the fibre of F (E) over p. Here the general linear group
GL(k,F) acts naturally on F (E) via a change of basis, giving the frame bundle the
structure of a principal GL(k,F)-bundle.

A global frame is then a frame over the entire base spaceM which only exists
if the bundle is trivialisable. This follows from the result that a frame (e1, . . . , ek)

over U ⊂ M for the bundle E determines a trivialisation ϕ : E|U → U × Fk such
that for each p ∈ U and i ∈ {1, . . . , k}, ϕ(ei(p)) = (p, vi) where (v1, . . . , vk) is the
standard basis of unit vectors in Fk.

Now we denote by F (Fp) the set of all frames on Fp, and let F (E) =
⋃
p∈M F (Fp).

This space has a natural topology and smooth manifold structure such that any
frame over U ⊂ M defines a smooth map U → F (E). With a smooth projection
map π : F (E)→M, we define a frame bundle.

Definition 16. Given a vector bundle E of rank k whose fibre is Fk (can be Rk or
Ck), the frame bundle of E is the principal GL(k,F)-bundle associated to E, and
is denoted F (E) ≡ (F (E), π,M,Fk, GL(k,F)).

2.4 Connection, Curvature, and Chern Classes

The notion of connection generalises the concept of directional derivative. We knew
that the derivative d/dx acts on the space of functions. For a vector bundle E, the
space of functions is generalised to the space of sections Γ(E) = {s :M→ E|π ◦ s =

idM}, as introduced before. Then a connection is defined as a linear operator,
D : Γ(E) → Γ(E ⊗ T ∗M), satisfying the Leibniz rule D(fs) = df ⊗ s + fDs, for
f ∈ C∞(M), s ∈ Γ(E). Here d is the usual exterior derivative. Connections allow
us to determine how sections of the bundle vary as we go from fibre to fibre. This is
known as a parallel transport in which we should determine a local expression for
the connection.

In local coordinates, let {ei} be a basis of sections (i.e. a frame) so that every
section s can be represented by s =

∑
i siei. We have Dei =

∑
j θijej, where the

connection matrix A = (θij) is represented by a matrix of one-forms. For a different
set of local coordinates related by a gauge transformation g :M→ G ⊂ Hom(V, V ),
the connection A is then represented by A′ = gAg−1 + dg g−1, where dg g−1 is the
Maurer-Cartan form of G. For each connection A, we define the covariant deriva-
tive as DA = d+A. This covariant derivative transforms covariantly under a gauge
transformation: DA′ = gDAg

−1.
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Curvature of a connection A is defined as Ω = D2
A = dA+A∧A, which enjoys

two important properties: Bianchi identity, DΩ = 0, and covariant transformation
Ω′ = gΩg−1 for a different set of local coordinates differed by a gauge transformation
g. In Chern-Simons (CS) theory, the curvature is the field strength F ≡ dA+A∧A.

One may construct many fibre bundles over the base spaceM, depending on the
choice of the transition functions. Some natural questions one may ask are how many
bundles there are overM with given F andG, and how much they differ from a trivial
bundleM×F . One brilliant way to classify the fibre bundles is using characteristic
classes, which are subsets of the cohomology classes of M that measure the non-
triviality or twisting of a bundle. In this sense, they are obstructions which prevent
a bundle from being a trivial bundle.

One particular essential characteristic class is that associated with complex vec-
tor bundles E, namely the Chern classes. From the Bianchi identity, we can verify
that the i-th Chern classes of E, ci(E) = 1

2πi
Tr Ωi is a closed form in H2i(M,R).

A representative of each Chern class, called a Chern form, ci(E) of E is given
by the coefficient of the characteristic polynomial of the curvature form Ω of E,
det
(
I − 1

2πi
λΩ
)

= Σici (E)λi. If we modify A to A + δA, the curvature is changed
to Ω +DAδA. Also, TrDδA = dTr δA. For any 2-cycle Σ, we have∫

Σ

1

2πi
Tr Ω′ =

∫
Σ

1

2πi
Tr(Ω +DAδA) =

∫
Σ

1

2πi
Tr Ω. (2.6)

By the same reasoning plus the Bianchi identity, the second Chern class c2(E) =
1

2πi
Tr(Ω ∧ Ω) is also a topological invariant. One interesting fact is that the CS

action S of the boundary ∂M and the second Chern class c2(E) of M are related
by dS = c2(E), meaning that the secondary characteristic class is defined by the
CS 3-form which trivialises the difference between two curvature forms. Further, by
the same approach, it is easy to verify that the Chern classes ci(E) as cohomology
classes are independent of choices of A. This is the beautiful Chern-Weil theory.
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3 Knots and Links

In the mathematical sense, a knot is a possibly tangled loop, freely floating in or-
dinary space. It is a remarkably complicated thing, even with all the sophisticated
techniques of modern topology, it has resisted a definitive treatment.

Knots have a fascinating connection with quantum physics. In fact, knot theory,
which aims to classify all knots, was largely motivated by physics of the late eigh-
teenth century. Lord Kelvin (Sir William Thomson) conjectured that atoms were
vortices of aether swirling along knotted paths in space in the 1860s1. This led to
the classification of knots by Peter Tait, in 1867, according to their number of cross-
ings when drawn on a plane. About twenty years later, he published a table of knots
with up to ten crossings along with the Tait conjectures. In this section, we state
some general ideas of knots and links and their invariants; a detailed analysis of knot
theory can be found in [15–18]. We begin with definitions of knots and links.

3.1 Definitions

Definition 17. A knot K is a smooth embedding of codimension 2 in a 3-manifold
M, that is diffeomorphic to S1. Formally, K is a simple closed curve (also known
as Jordan curve) that is a nearly injective and continuous function K : [0, 1]→M,
with the only “non-injectivity” being K(0) = K(1).

The most common 3-manifolds are R3 or S3.

Definition 18. A link L is a smooth embedding into a 3-manifold M that is dif-
feomorphic to a finite disjoint union of knots: L = K1 t K2 t · · · t Kn.

Each knot Ki is called a complement of the link. The number of complements of a
link L is called the multiplicity µ(L) of the link. A subset of the components of the
link is called a sublink. From now on, the discussion focusses on links whereby all
the notions on links apply similarly to knots.

Definition 19. A link diagram D is the projection of a link onto a plane with
crossings indicated. A crossing is a point on the diagram D of the link where the
link passes over or under itself. A crossing number of a link L, denoted by c(L),
is the minimum number of crossings over the set of diagrams D of L,

c(L) = min{c(D) |D ∈ diagrams of L}. (3.1)

1Lord Kelvin’s conjecture implies that the more complex the knot, the heavier the atom. The
conjecture was ultimately fruitless, as we know well today. On the other hand, other attempts to
find a connection between the topological properties of knots and topological properties in certain
electromagnetic phenomena proved successful [15].
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Figure 2: Some examples of knot diagrams and link diagrams.

A standard notation for knots and links is xLn : x indicates the crossing number
(i.e. c(L)), L the number of components (only for links with L > 1) and n is a
number used to enumerate knots and links in a given set characterized by x and
L. The simplest example is the trivial knot or unknot, 01, which is just the circle,
C = {(x, y, z) ∈ R3 |x2 + y2 = 1, z = 0}. More interesting examples are depicted
in Fig. 2. The knot 31 is known as the trefoil knot, whereas 41 is known as the
figure-eight knot. The link 22

1 is called the Hopf link.

Remark. Since a link is a manifold (a submanifold ofM), it makes sense to give it
an orientation, hence a link with an orientation is called an oriented link.

Ambient Isotopy

As one would expect, two links are said to be equivalent or homotopic to each
other if they can be continuously deformed into one another by bending, shrink-
ing and expanding operations, without breaking them. However, in knot theory, a
stronger definition than homotopy is required to determine whether two embeddings
are connected. It is the ambient isotopy which we now define.
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Definition 20. An isotopy is a homotopy for which H(s, t) is injective for all
t ∈ I = [0, 1].

The injectivity removes the possibility of a knot passing through itself. However,
this is still not enough because the knots have no thickness (infinitesimally thin), we
can deform a knot by tightening it to the point where it disappears. The result is
that all knots are isotopic to the unknot. So, we need the concept of ambient isotopy
which allows us to stretch, compress and distort the whole ambient space containing
the knot, instead of just the knot. The term “ambient” comes from ambient space,
which is the space surrounding a mathematical object along with the object itself.
Some common ambient spaces are vector spaces, affine spaces, projective spaces, and
Grassmann spaces.

Definition 21. Two links L and L′ are ambient isotopic if there is a smooth map
α : [0, 1]×M→M such that for each value t ∈ [0, 1], the map α(t, ·) :M→M is
a diffeomorphism, and α(0, ·) is the identity map onM, while α(1, ·) maps L to L′.

All links are classified up to ambient isotopy. Naturally enough, an equivalence class
of links with ambient isotopy is called an ambient isotopy class. This defines the
link diagram.

Reidemeister Moves

There is now a basic question: how do we know two different diagrams represent
the same ambient isotopy class, i.e. they are ambient isotopic? This question has a
beautiful answer. Two diagrams D1 and D2 with the associated links L1 and L2 are
ambient isotopic if and only if a finite sequence of Reidemeister moves (Fig. 3)
which transforms D1 to D2 exists. These moves are local changes to a diagram and
are very important in knot theory as they encode the symmetry structure in the link
classification problem. Indeed we can construct link invariants of ambient isotopy by
finding invariants of the symmetry group generated by the Reidemeister moves.

The Reidemeister moves can be used to determine which knots are ambient
isotopic to their mirror images and which are not. For example, in Fig. 4, the trefoil
is not isotopic to its mirror image, while the figure-eight knot is. Such knots which
are isotopic to their mirror images are said to be amphichiral.

3.2 Invariants

Two useful quantities to distinguish an oriented link diagram D from the other one
is the writhe and the linking number.

Definition 22. A writhe (self-linking number, cotorsion or Tait number) of
D, is defined as φ(D) =

∑
p∈D ε(p), which is the sum over all crossing points p in D

with ε(p) = ±1 being a sign associated to the crossings as indicated in Fig. 5.
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Figure 3: Reidemeister moves.

(a)

(b)

Figure 4: (a) The trefoil is not ambient isotopic to its mirror image, (b) the figure-
eight knot is ambient isotopic to its mirror image.

Equivalently, the writhe can be written as φ(D) = n+(D) − n−(D) for n±(D)

the number of positive (negative) crossings. The problem is that it is not an ambient
isotopy invariant2.

We now define an ambient isotopy invariant for any two linked oriented knots

2The writhe is only a regular isotopy invariant, which means that it does not change under a
sequence of Reidemeister moves of types II and III.
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Figure 5: Positive crossing (or over crossing) is assigned with a sign +1 and negative
crossing (under crossing) a sign −1 when computing the linking number of two knots.

Figure 6: Two different orientations of trefoil knot.

K1,K2, known as the linking number:

lk(K1,K2) =
1

2

∑
p

ε(p), (3.2)

For example, once an orientation is chosen for the trefoil knot shown in Fig. 6, one
finds two inequivalent oriented links with linking numbers ±1. The linking number
of a link L with components Kα, α = 1, . . . , L is defined as:

lk(L) =
∑
α<β

lk(Kα,Kβ). (3.3)

3.3 Framings

In the previous section 3.2, we stated that the writhe which defines the self-linking
number of a link is not invariant under the deformations of the link and its ambient
space. In order to make sense of the self-linking of a link L topologically, one needs the
idea of framing of a link. Just as an orientation may be represented by a nonvanishing
vector field tangent to the link, a framing of a link is a vector field that is nowhere
tangent to the link. Note that for any link L embedded inM, the tangent space of
the link, at any point p ∈ L, is a subspace of the tangent space ofM,

TpL ⊆ TpM∼=M. (3.4)

We call a smooth function from L toM a vector field on L, being careful that it is
not necessarily a tangent vector field.
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Figure 7: Tubular neighbourhood of a link L.

Definition 23. The framing of a link L ⊂M is a normal vector field n on L, such
that np /∈ TpL for all p ∈ L, as in Fig. 8a. A link equipped with a framing is called a
framed link, Lf . The standard framing, also called the canonical framing or
blackboard framing, is the unit vector field that is everywhere orthogonal to the
plane of projection of the link, oriented towards the point of projection.

The idea is that by displacing L slightly in the direction of the vector field v one gets
a new link Lf , in the tubular neighbourhood of L. The tubular neighbourhood L is
simply a torus whose core is L, as in Fig. 7.

We may think of the framing as a thickening of the link into a tiny ribbon
bounded by L and Lf , which is drawn in Fig. 8a. It is clear that the self-linking
number defined this way depends not on the actual vector field used to displace L
to Lf but only on the topological class of this vector field; and indeed by a framing
we mean only the topological class. The projective diagram of this link will then
have crossings between the link and its framing. These crossing correspond to the
twists in the ribbon itself. We mentioned that a normal knot has no thickness, thus
it cannot have any twisting.

Cotorsion (Writhe / Self-linking Number)

Through a convenient framing of L, the self-linking number or cotorsion, which is
the linking number of a link and its framing, lk(L,Lf ), is then a t-fold twist in the
framing of L:

φ(L) = lk(L,Lf ) = t(L); (3.5)

as illustrated in Fig. 8b. This provides us a way to obtain the linking number. We
simply need to look at the link diagram and calculate the number of crossing points
(for different links) and twists (for the same link).

Another way is a more direct geometrical interpretation of the linking number.
By expressing a linking number in terms of the Gauss integral,

lk(Lα,Lβ) =
1

4π

∮
Lα
dxµ

∮
Lβ
dyνεµνρ

(x− y)ρ

|x− y|3
, (3.6)

– 17 –



(a) (b)

Figure 8: (a) Framing of a knot. (b) The framing is shifted by 2 units by making
a 2-fold twist.

Figure 9: Two framings of the unknot.

where the distance |x − y| is computed by means of the flat (Euclidean) metric of
M. For α = β, the integral is

φ̃(L) =
1

4π

∮
L
dxµ

∮
L
dyνεµνρ

(x− y)ρ

|x− y|3
. (3.7)

This integral is well-defined and finite except near x = y. It is also not an ambient
isotopy invariant. By means of framing, we can remedy this integral. Having another
link Lf , the integral becomes the cotorsion φ(L):

φ(L) =
1

4π

∮
L
dxµ

∮
Lf
dyνεµνρ

(x− y)ρ

|x− y|3
= lk(L,Lf ). (3.8)

One thing to notice here is that the integrand in (3.8) is dependent on the metric of
M, but the result of the integral is metric-independent, i.e. it depends exclusively
on topology.

Two framed links, Lf1 and Lf2 are equivalent, if there exists an ambient isotopy
that takes the link L1 to L2 and also takes Lf1 to Lf2. An example depicted in Fig.
9 shows that the two framings of the unknot are not isotopic. To use a link invariant
to assess whether two links are equivalent, one has to make sure that they are both
in the same framing, because link invariants are not guaranteed to be constant over
a change of framing.
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Canonical Framing

Now, is it always possible to pick a standard (or canonical) framing such that the
cotorsion vanishes: lk(L,Lf ) = 0, so that we can hide the self-linking question? On
S3, there is a canonical framing of every knot and link. On general three manifolds,
this cannot be done since the cotorsion may be ill-defined or may differ from an
integer by a definite fraction. Even when the canonical framing does exist, it is not
convenient to be restricted to using it, since natural operations (like the surgery in
Section 5.1) may not preserve it. We will later see that framings arise naturally when
considering regularised Wilson loops in a TQFT (see Section 5.2).

3.4 Polynomial Invariants

One of the earliest knot polynomial discovered was the Alexander polynomial by
James W. Alexander in 1923 [19], who was a pioneer of algebraic topology. Its
significance was not realised until the discovery of the Jones polynomial by Vaughan
Jones in 1984 [20]. This discovery led to a flood of new surprises that is continuing
to this very day. Jones polynomial is a one-variable polynomial assigned to a knot
or a link in the manifoldM. To define it, we require some terminologies.

Definition 24. The Laurent polynomial over a field F is defined as,

p =
∑
k∈Z

pkt
k pk ∈ F, (3.9)

where t is a variable and pk is nonzero for finitely many k.

Definition 25. The Kauffman bracket 〈 · 〉 is a function from unoriented link
diagrams in the oriented plane to Laurent polynomials with integer coefficients in a
variable A. It maps a diagram D to 〈D〉 ∈ Z[A−1, A] and is characterised by,

1. 〈©〉 = 1,

2. 〈D t ©〉 = (−A−2 − A2)〈D〉,

3. 〈D+〉 = A〈D0〉+ A−1〈D∞〉.

Note that as a consequence of this we have 〈D−〉 = A−1〈D0〉 + A〈D∞〉. Here, ©
is the unknot. The notations D+, D−, D0, D∞ refer to any link diagrams D, which
have been modified in some neighbourhood of a point p ∈ D, as shown in Fig. 10,
respectively.

Definition 26. The skein relations are formulae that define the link invariants by
saying how a link invariant is affected by modifying some small portion of the link
diagram while keeping the rest of the diagram fixed.

We now define the Jones polynomial as follows.
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Figure 10: Locally modified link diagrams D+, D−, D0, D∞, which are collectively
known as the unoriented Conway quadruple.

Figure 11: Oriented Conway triple.

Definition 27. The Jones polynomial of an oriented link L, denoted by V (L) or
V L(t), is the Laurent polynomial in t1/2 with integer coefficients, defined by

V L(t) = (−A)−3φ(D)〈D〉
∣∣∣
t1/2=A−2

∈ Z[t−1/2, t1/2], (3.10)

where D is a diagram of oriented link L and φ(D) is the cotorsion of D.

There is another proposition often used as an alternative definition of the Jones
polynomial.

Proposition. The Jones polynomial is a function,

V : {oriented links in M} → Z[t−1/2, t1/2], (3.11)

which is defined by the axioms:

1. Invariance: V (L) is invariant under ambient isotopy of L, i.e. if L1 and L2 are
ambient isotopic, then V (L1) = V (L2).

2. Normalisation: V (©) = 1, where © denotes the unknot or trivial knot.

3. Skein relation: Whenever three oriented links L+, L−, L0 are the same except
in the neighbourhood of a point where they differ as in the (oriented) Conway
triple (Fig. 11), then we have the skein relation,

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0. (3.12)

According to definitions of Jones polynomial, there are two ways to compute the
Jones polynomial of a given link or knot, namely, using the Kauffman brackets and
the skein relation. The relatively more popular (and straightforward) method is the
skein relation, which we shall illustrate using the Hopf links.
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Example. We consider the positive and negative Hopf links with their variants, as
in Fig. 12. Using the skein relation (3.12), we have

t−1V (H+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0,

t−1V (L+)− tV (H−) + (t−1/2 − t1/2)V (L0) = 0,
(3.13)

for the positive Hopf link (H+ ≡ L+) and the negative Hopf link (H− ≡ L−), respec-
tively. For L0 in both cases, they are just unknot. By definition, V (L0) = 1. The
L− in the former case and the L+ in the latter case are both two unlinked unknots.
To evaluate the Jones polynomial of the two unlinked unknots, we consider its Skein
triple (Fig. 13) and apply the skein relation,

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0. (3.14)

Since both L+ and L− are unknots, V (L+) = V (L−) = 1, then

V (L0) = −(t1/2 + t−1/2). (3.15)

Returning to evaluating the Jones polynomial of Hopf links, we have

t−1V (H+) + t(t1/2 + t−1/2) + (t−1/2 − t1/2) = 0,

−t−1(t1/2 + t−1/2)− tV (H−) + (t−1/2 − t1/2) = 0,
(3.16)

which give us

V (H+) = −t1/2(1 + t2) and V (H−) = −t−1/2(1 + t−2). (3.17)

Since the Jones polynomial V (H+) is not invariant under t → t−1, we deduce that
the positive Hopf link is not equivalent to its mirror image; same deduction applies
to the negative Hopf link.

There is a generalisation of the Jones polynomial, known as the HOMFLY poly-
nomial, which was introduced by Freyd et al. (1985) [21]. It depends on two variables
q and λ. Some texts refer to it as HOMFLYPT polynomial in the recognition of in-
dependent work carried out by Józef H. Przytycki and Paweł Traczyk.

Definition 28. The HOMFLY polynomial, P (L) or PL(q, λ), of an oriented link
L is defined by the following three axioms:

1. Invariance: PL(q, λ) is invariant under ambient isotopy of L.

2. Normalisation: P (©) = 1.

3. Skein relation: q−1P (L+)− qP (L−) = λP (L0).
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(a) (b)

Figure 12: Skein trees for the (a) positive Hopf link (H+ ≡ L+ with positive linking
number) and (b) negative Hopf link (H− ≡ L− with negative linking number).

Figure 13: The Skein triple for two unlinked unknots (L0).

The Jones polynomial and its relatives turn out to be closely related to the corre-
lation function (4.15) (or the vacuum expectation value of products of Wilson loops)
with a gauge group G being considered. One will obtain the HOMFLY polynomial
from the Chern-Simons (CS) theory when G = SU(N) or U(N)3 and all the Wilson
loop components are taken in the fundamental representation4 Rα = 2. Explicitly,
we have

W2···2(L) = λlk(L)

(
λ

1
2 − λ− 1

2

q
1
2 − q− 1

2

)
PL(q, λ), (3.18)

where lk(L) is the linking number of L, and the variables q and λ are related to the
CS variables k and h∨ as

q = exp

(
2πi

k + h∨

)
, λ = qh

∨
, (3.19)

3We work in large N limit. Our results for HOMFLY polynomial are not sensitive to this choice.
4The irreducible representations of SU(N) are labelled by highest weights or equivalently by the

lengths of rows in a Young tableau, li, where l1 ≥ l2 ≥ . . . .
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where k is the level of CS theory and h∨ is the dual Coxeter number5 of the gauge
group G (h∨ = N for G = SU(N)). For N = 2, the HOMFLY polynomial reduces to
the one-variable polynomial, the Jones polynomial, V K(t), provided the identification
t = exp( 2πi

k+2
). The case of SU(2) as gauge group and Wilson loops carrying a

higher dimensional representation (of spin s/2, s ∈ Z+) leads to the Akutsu-Wadati
polynomials [22]. When the gauge group of CS theory is SO(N), W2···2(L) is closely
related to the Kauffman polynomial [23].

5The dual Coxeter labels a∨i (i = 1, . . . , r = rank(g)) of a Lie algebra g are the expansion
coefficients of highest coroot θ∨ in terms of the coroot α∨(i): θ∨ =

∑r
i=1 a

∨
i α
∨(i). The dual Coxeter

number h∨ is defined as h∨ = 1 +
∑r
i a
∨
i . It can also be defined by the quadratic Casimir of the

adjoint representation of g: fabcf bcd = 2h∨δad, where fabc are the structure constants of g.
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4 Chern-Simons Theory

The intervention of topology into QFT was first recognised in the discovery of
magnetic monopoles in SU(2) gauge theory with scalar field-Georgi-Glashow model
[24, 25]. The magnetic charge is of topological nature and simple topological con-
siderations were used to prove the existence of magnetic monopoles in a large class
of gauge theories, including all grand unification theories. QFT where topological
invariance is manifest, is then coined the term “Topological Quantum Field Theory”
or TQFT in short.

There are two types of TQFTs, according to the terminology of Birmingham
et al. [26]. These are called topological field theories of Schwarz type and Witten
type. In the Schwarz type theories, the classical action is invariant under a change of
background metric and this symmetry is preserved upon quantisation. The Witten
type is a cohomological field theory with a very different flavour, which we will not
discuss in this review (a detailed discussion can be found in [4, 27]).

4.1 The Chern-Simons Action

Chern–Simons (CS) theory is a general covariant 3-dimensional Schwarz type TQFT
with a gauge invariant Lagrangian that does not contain a metric. The CS theory
can be defined on any topological 3-manifold M, with or without boundary. We
begin on a compact, oriented three-manifoldM with a compact simple gauge group
G. Since CS theory is a gauge theory, its classical configuration on M with gauge
group G is described by a principal G-bundle E over M, which we may choose to
be topologically trivial (a technical convenience). The G-gauge connection of this G-
trivial bundle E is characterised by a gauge field Aai , which is a connection one-form
valued in the Lie algebra g of the Lie group G. Here a runs over a basis of g, and i
is tangent toM.

In general, the connection A is defined locally on individual coordinate patches,
and the values of A on different patches are related by maps known as gauge trans-
formations. An infinitesimal gauge transformation is

Ai → Ai −Diε, (4.1)

where ε, a generator of the gauge group G, is a g-valued zero form. These are
characterised by the assertion that the covariant derivative,

Diε = ∂iε+ [Ai, ε], (4.2)

transforms in the adjoint representation of the Lie group G. The curvature (or
field strength), defined as the “square” of the covariant derivative with itself, is the
g-valued two form

Fij = [Di, Dj] = ∂iAj − ∂jAi + [Ai, Aj]. (4.3)
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It also transforms in the adjoint representation.
The CS action is an integral of the CS three-form on a compact oriented 3-

manifold,

S =
k

4π

∫
M

Tr (A ∧ dA+
2

3
A ∧ A ∧ A)

=
k

4π

∫
d3x εijk Tr (Ai∂jAk +

2

3
AiAjAk),

(4.4)

where k is the (inverse) coupling constant and is known as the level of the CS
theory. The CS theory is weakly coupled as k → ∞ and becomes strongly coupled
as k gets smaller. The trace Tr denotes an invariant, bilinear, quadratic form on the
Lie algebra g and is a multiple of the Killing form. For instance, for G = SU(N),
the trace Tr is given concretely in the fundamental representation of SU(N).

Since the CS action (4.4) does not involve the metric, the resulting theory is
topological. This explains why the standard Yang-Mills action

SYM =

∫
M

√
ggikgjl Tr (FijFkl), (4.5)

is not chosen, as it depends on the choice of a metric gij ofM.
This CS action is nonabelian and has been studied classically by Zuckerman [28].

The abelian CS theory, where its action is only the first term on the right-hand side
of (4.4), S = k

4π

∫
M Tr (A ∧ dA), was studied by Schwarz [29]. Three dimensional

gauge theories with the CS term added to the Yang-Mills action were introduced in
[30–33].

Non-perturbative Methods and Perturbative Methods

The CS gauge theory was first analysed from a non-perturbative point of view. Wit-
ten [11] used fundamental properties of QFT, in particular the path integral formula-
tion, which led him to establish the equivalence between vacuum expectation values
(vevs) of Wilson loops and polynomial invariants like the Jones polynomial and its
generalisations. An equivalent result was then obtained by Reshetikhin and Turaev
[34] using quantum groups. Then there are perturbative approaches using propaga-
tors and Feynman diagram expansion familiar in perturbative QFT. The first work
was done by Guadagnini et al. [35] in the case of M = S3 and link L 6= ∅. It was
then elaborated by Bar-Natan [36]. The caseM 6= S3, L = ∅ was treated by Axel-
rod and Singer [37, 38]. It was pointed out that the coefficients of the perturbative
series correspond to Vassiliev invariants [39, 40]. A nice review of the development
of perturbative methods can be found in Labastida (1999) [41].

We will present Witten’s non-perturbative method and the relation of this 3-
dimensional theory to the 2-dimensional Wess-Zumino-Witten (WZW) model6 in

6WZW model is also known as Wess–Zumino–Novikov–Witten (WZNW) model in recognition
of the work by Sergei Novikov.
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Section 5. In order to do so, we need a suitable observable for the CS theory. Before
discussing the observables, let us briefly digress into the topics of CFT and WZW
model.

4.2 A Brief Digression: CFT and WZW Model

A 2-dimensional conformal field theory (CFT) can be separated into a left-moving
(holomorphic) sector and a right-moving (anti-holomorphic) sector. It has a Vira-
soro algebra generated by its energy-momentum tensors T (z), T (z), and a Kac-
Moody algebra generated by its chiral currents Ja(z), J

a
(z). The left-moving gen-

erators have the mode expansions T (z) =
∑

n∈Z Ln/z
n+2 and Ja(z) =

∑
n∈Z J

a
n/z

n+1;
similar expressions for the right-moving counterparts. Operators (or states due to
the state-operator correspondence) are labelled independently by representations of
the left- and right-moving Virasoro and Kac-Moody algebras. In particular, the
left-moving primary fields φl(z, z), l ≥ 0 in the fundamental representation R of
SU(N) are defined by Ln and Jan acting on it as, Lnφl = 0, L0φl = hlφl and
Janφl = 0, Ja0φl = tal φl, where the eigenvalues hl and tal are respectively the con-
formal weight (dimension) of the the field φl, and the generators of SU(N) for
φl. Since L0 + L0 generates dilatations, the scaling dimension of the field φl is
∆ = hl + hl (hl is a real number, not conjugate), the eigenvalue of the dilatation
operator D = L0 + L0.

In CFT, an N -point function of primary fields is determined by a scaling function
of the fields, with power laws determined by the conformal dimensions of the fields.
The Operator Product Expansion (OPE) of two primary fields in the form of:

φi(z1, z1)φj(z2, z2) =
∑
k

cij
k(z13, z23; z13,z23)φk(z3, z3), cij

k 6= 0, (4.6)

suggests that the N -point function can be written as a sum of products of three-
point functions, known as conformal blocks7, which appear in the work of Belavin,
Polyakov, and Zamolodchikov [42]. Segal [43] described these in terms of “modular
functors” that canonically associate a Hilbert space to a Riemann surface. The choice
of which pair of fields is being fused is arbitrary and the OPE encodes a commutative
algebra called the fusion algebra. This requirement leads to a set of consistency
conditions for the OPE which, in turn, implies constraints on the correlators of the
CFT, as in Fig. 14. These consistency conditions, known as crossing and unitarity
symmetries, impose severe constraints on the explicit forms of the conformal blocks
which, in specific CFTs, are stringent enough to determine these functions completely.

A 2-dimensional CFT is characterised by the data: the central charge c, the
conformal weights hl of the primary fields φl, and the coefficients of the OPE’s of the
primary fields, i.e. their fusion rules. The so-called fusion rules determine which

7Conformal blocks are also called the pants in texts of CFT.
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(a) (b)

Figure 14: The OPE: (a) fusion of two primary fields, (b) consistency condition for
the fusion algebra.

conformal families (primary fields and their descendants) appear in the OPE of two
conformal fields. These fusion rules give constraints on the central charge and the
conformal weights of the CFT. As a consequence of these constraints, it turns out
that some CFT’s consist of only a finite number of conformal fields. These theories
are called rational conformal field theories (RCFT’s).

An important example of a completely solvable, chiral RCFT in two dimensions
is the Wess-Zumino-Witten (WZW) model [44]. This model is a nonlinear
sigma model whose action is a functional of a field Φ that maps a Riemann surface
Σ to a Lie group G (Φ : Σ → G). It features an extended chiral algebra, called
the affine Lie algebra, due to the existence of additional symmetries in the model.
Moreover, due to the chirality property, the conformal weights of the WZW primary
fields are hl = hl = ∆. For an extensive review of the WZW model, see, for instance,
Di Francesco et al. (1997) [45].

4.3 Wilson Loop Operator

As a standard procedure in QFT, in addition to a Lagrangian, we wish to pick a
suitable class of gauge invariant observables. In the present context, the usual gauge
invariant local operators would not be appropriate, as they spoil general covariance.
However, the “Wilson line” so familiar in Quantum Chromodynamics (QCD) gives
a natural class of gauge invariant observables without requiring a choice of metric.
Formally, the observables should satisfy

δ

δgµν
〈Oi1 . . .Oin〉 = 0 (4.7)

for a set of operators Oi1 , . . . , Oin .
We now define the Wilson loop operator in CS theory. Quite generally, a Wilson

loop operator WR(C) in any gauge theory on a manifold M is described by the
data of an oriented, closed curve C which is smoothly embedded in M and which
is decorated by an irreducible representation R of the gauge group G. Intrinsically
C is simply a circle, but the topological classification of embeddings of a circle in
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Figure 15: A link embedded in a 3-manifold.

M can be very complicated, such as in Fig. 15. This way of embedding defines the
notion of knots and links, denoted by K and L, respectively (see Section 3 for an
exposition of the knot theory). From now on, instead of circles C, we will consider
knots and links (in fact, circle is a type of knot, known as the unknot).

Following the standard practice in QFT, we describe the holonomy around the
knot:

UK = HolK(A[K(x)]) (4.8)

in terms of a path-ordered exponential P exp
( ∮
KA[K(x)]

)
, x ∈ [0, 1], which de-

scribes solutions to the first-order differential equation for for a vector ν(x), parallelly
transported along K(x):

DKν(x) =
dν(x)

dx
+ (A[K(x)])ν(x) = 0. (4.9)

To see this, one can recursively replacing the solution

ν(x+ δx) = (1− δxA[K(x)])ν(x) ≈ exp(−δxA[K(x)])ν(x) (4.10)

into itself, and take δx → 0+, Nδx = x when reaching ν(x + Nδx) at the end of
computation. One will obtain an explicit expression for how the vector ν(x) acts
under parallel transport:

ν(x) = P exp(−
∫ x

0

dx′A[K(x′)]) ν(0). (4.11)

Here, P is the path-ordering operator8 which is essentially defined as the time-
ordering operator in QFT. As a functional of the connection A, the Wilson loop
operator WK

R (A) is then given by the trace in R of the holonomy of A around an
oriented knot K,

WK
R (A) = TrR UK = TrR HolK(A)

= TrR P exp(

∮
K
A)

= TrR P exp(

∮
K
Ai dx

i).

(4.12)

8The path-ordering operator P acts on the power series expansion of the exponential by ordering
the terms with higher values of t to the left.
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Due to cyclicity of the trace, it is gauge invariant9. Physically, it characterises a
charged particle moving round a loop and plays an important role in understanding
the topology of the manifold.

The knots (and links) that we considered are oriented. So, if K−1 denotes the
knot obtained from K by inverting its orientation, we have that

TrR UK−1 = TrR U
−1
K = TrR UK, (4.13)

where R denotes the conjugate representation of the group G.
With the Wilson loop operator in hand, we can compute the partition function

(or unnormalised Wilson loop path integral) of link L inM, denoted by

ZR1...RL(L) =

∫
[DA] eiS (

L∏
α=1

WKα
Rα ) (4.14)

for a link L with components Kα, α = 1, . . . , L. Here, [DA] is a fictitious diffeomor-
phism invariant measure on all A’s modulo gauge transformation. For a manifold
M that contains no links, the partition function is then Z(M) =

∫
[DA] eiS. We can

further compute the correlation function (or absolutely normalised Wilson loop
path integral), defined by

WR1...RL(L) =< WK1
R1
. . .WKL

RL >=
1

Z(M)

∫
[DA] eiS (

L∏
α=1

WKα
Rα ). (4.15)

Classically, the Wilson loop operator is naturally a topological invariant of the
link L as it is defined without using any metric on the 3-manifold. However, the
quantum theory may not preserve this invariance, since there would be anomalies
that spoil the classical symmetry in the correlation function (4.15). Witten showed
that the topological invariance of CS theory can be preserved at the quantum level,
but with an extra subtlety: the invariant depends not only on the 3-manifold but
also on a choice of framing (simply means the trivialisation of the tangent bundle
TM⊕ TM).

4.4 Properties of Chern-Simons Theory

To end this section, we mention several important properties of the CS theory:

1. The CS action is purely topological, as it depends only on the choice of an
orientation, not a metric onM.

2. The classical equations of motion of the CS theory are satisfied if and only if
the curvature F vanishes everywhere onM, in which case the connection A is

9Generally, we have a Wilson line which is defined on an arbitrary path and is not gauge invariant.
We may drop the negative sign in the Wilson loop by picking an orientation.
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said to be flat. Recall that the equations of motion are the critical or stationary
points of the CS action. To see this, we compute the variation of the CS action

δS = δ

(
k

4π

∫
M

Tr (A ∧ dA+
2

3
A ∧ A ∧ A)

)
= 2
( k

4π

)∫
M

Tr
(

(dA+ A ∧ A) ∧ δA
)
,

(4.16)

it only vanishes if F ≡ dA+A∧A = 0 for all variations δA. Hence the classical
solutions to CS theory are the flat connections of principal G-bundles onM.

Flat connections are determined entirely by holonomies around non-contractible
cycles on M. In fact, the gauge equivalence classes of flat connections are in
one-to-one correspondence with equivalence classes of homomorphisms from
π1(M) to G up to conjugation. The classical solutions of CS overM is there-
fore the moduli space Hom(π1(M), G)/G, where G acts by conjugation.

3. The CS term10 in the action preserves local (homotopically trivial) gauge in-
variance for spacetime manifolds without boundary, but is not invariant un-
der “large” (homotopically nontrivial) gauge transformations. To see this, we
let A be the space of connections A on the G-bundle and the gauge group
G = {M → G} acts on A via

Ai → gAig
−1 − ∂igg−1, g ∈ G. (4.17)

The CS action transforms as

S → S +
k

4π

∫
d3x

[
εijk∂i Tr(∂jgg

−1Ak) +
1

3
εijk Tr(g−1∂igg

−1∂jgg
−1∂kg)

]
.

(4.18)
The second term is a total derivative that vanishes but the last term does not
vanish. This means that the CS action is not invariant under these large gauge
transformations where the gauge transformations “wind” around spacetime.
The winding is counted by the function

w(g) =
1

24π2

∫
d3x εijk Tr(g−1∂igg

−1∂jgg
−1∂kg), (4.19)

called the winding number w(g), which appears in the last term up to a
constant. Using the fact that the homotopy group π3(G) ' Z for any compact
connected simple Lie group G [46], the value of w(g) is an integer which co-
incides with the index of the homotopy class of G. We then see that the CS
action shifts by integral multiples of 2π:

S[A]→ S[A] + 2πkw(g). (4.20)
10The CS term is also known as a topological mass term.
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As in Dirac’s famous work on magnetic monopoles [47], consistency in QFT
does not require the gauge invariance of S[A], but only of the path integral
exp(iS[A]). This holds if the CS level k is quantised to be an integer. This is
the quantisation condition for CS theory first discussed in [32].

Notice that in the abelian case with compact group manifold G = U(1) all the
homotopy groups higher than π1 are trivial and thus the CS coupling constant
can take arbitrary values. Also, for non-compact Lie groups, there is no such
quantisation condition. We will see later that the level k of CS theory (which
is also the level of affine Lie algebra) is closely related to the central charge in
the representation theory of affine Lie algebra.

4. The partition function of CS theory is shown [11] to be a topological invariant
of an oriented, framed 3-manifoldM, at least for the weak coupling limit (large
k limit). It is necessary to specify the framing of the 3-manifold, which means
that the 3-manifold must be presented with a homotopy class of trivialisations
of the tangent bundle.
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Figure 16: A link L on a general 3-manifoldM. A small sphere S2 is drawn about
an inconvenient crossing.

5 Witten’s Ideas and Computations

5.1 Knot and Link Invariants from Chern-Simons Theory

We will now present how the skein relation of the Jones polynomial emerges from CS
theory with gauge group SU(2). Consider an arbitrary 3-manifoldM (specifically a
3-sphere S3 in later discussion) with a link L embedded in it, as depicted in Fig. 16.

Surgery I: Cut the Link

The Wilson loops are all in the fundamental representation (or the defining 2-
dimensional representation11) of SU(2), denoted here as R. We identify a crossing of
L and we surround it with a sphere S2, which we will cut it out and study it in detail.
We can then think of the 3-manifoldM as the connected sum: M =ML#MR where
ML andMR are the two disjoint subsets ofM with boundary S2, corresponding to
the outside and inside of the S2 respectively. By cutting the sphere, we perform a
Heegaard splitting12 of the 3-manifold, leading to a simple pieceMR = B where B
is the 3-ball bounded by S2, and a complicated pieceML =M\B, as depicted in Fig.
17. Notice that the boundaries ofMR andML are both S2, ∂MR = ∂ML = S2, but
they have opposite orientation. On the boundary, there are four marked points
indicating the intersections of L with S2 which are connected by two lines in the
interior of the 3-ball.

11The defining representation is a matrix subgroup of the Lie group G whose basis space is formed
by N real or complex vectors. This is generally different from the fundamental representation, which
is a finite dimensional irreducible representation of a semisimple Lie group or Lie algebra if its highest
weight is a fundamental weight. For classical algebras su(N), so(N), sp(N) and their groups, the
defining representation is a fundamental representation, which has been used interchangeably in
most of the physics literature.

12A Heegaard splitting is a decomposition of a compact oriented 3-manifold into two handlebodies.
Their common boundary is called the Heegaard surface of the splitting. Splittings are considered
up to ambient isotopy.
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Figure 17: ManifoldM is split intoMR (the interior of S2) andML (the exterior
of S2 with complicated piece whose details are not drawn).

Canonical Quantisation

To each boundary ∂MR and ∂ML, we can associate with them the 2-dimensional
physical Hilbert spaces HR and HL (canonically dual to one another). This associ-
ation is called the canonical quantisation of path integrals of CS theory over a
manifold (boundary) [8]. Then, the path integrals on MR and ML give vectors ψ
and χ in HR and HL, respectively.

If we act on the boundary ∂MR with a diffeomorphism K before gluing the
manifolds back, then the vector ψ in HR is replaced by Kψ so (χ, ψ) is replaced by
(χ,Kψ). This potentially provides a way to determine how the partition function of
a TQFT transforms under surgery.

Surgery II: Glue the Link

By gluing back the manifoldsML andMR back together, we will have the partition
function of link L that we want, written as

Z(M;L) = (χ, ψ), (5.1)

where the RHS is a natural pairing of the vectors, meaning that for any nonzero
vector ψ ∈ HR there is a vector χ ∈ HL such that (χ, ψ) 6= 0, and vice-versa [48].
There is no way to evaluate (5.1) since we know neither ψ nor χ. The one thing that
we know at present is the pairing occurs in a 2-dimensional vector space. We can
use the marvelous property that in a 2-dimensional vector space, any three vectors
ψ, ψ1, ψ2 in HR obey a relation of linear dependence, i.e.

αψ + βψ1 + γψ2 = 0, (5.2)

where α, β, and γ are complex functions. We can achieve this relation by considering
two diffeomorphisms13 ofMR, namelyX1 andX2 as in Fig. 18, that swap the marked

13Let us call the modified manifold, in which a diffeomorphism is applied, M′R. When we put
M =ML#M′R back together, we would have changed the equivalence class of the knot, because
the “braids” connecting the marked points would have modified the crossing. The expansion of a
link in terms of two variations of that same link is exactly the skein relation (3.12).
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Figure 18: ManifoldMR and its variations.

Figure 19: A link expectation value relation.

points in such a way that they result in the other two crossings from the oriented
Conway triple (Fig. 11). Let ψ1 and ψ2 be the corresponding vectors of X1 and X2

in HR, we can then write a linear dependence as in (5.2). It follows immediately
that,

α(χ, ψ) + β(χ, ψ1) + γ(χ, ψ2) = 0, (5.3)

and hence,

αZ(L) + βZ(L1) + γZ(L2) = 0, (5.4)

where the notations of manifolds are omitted to make the resemblance to the skein
relation (3.12) of Jones polynomial clearer. This relation (5.4) is often drawn as in
Fig. 19. In fact, it uniquely determines the expectation values of all knots and links
in S3 (see Section 4.1 in [11] for proof).
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Half-Monodromy

What is left now is to compute the coefficients α, β, and γ. This requires a further
study of the 2-dimensional Hilbert space HR which arises as a 1-dimensional space of
conformal blocks for the R,R,R,R four-point functions on S2 (R being the dual
of the defining 2-dimensional representation of SU(2), R). The three configurations
in Fig. 18 can be regarded as differing from each other by a diffeomorphism called
the half-monodromy acting on the boundary MR under which the two copies of
R switch places by taking a half-step around one another. This is indicated in Fig.
20. These half-monodromies may be represented as a linear transformation on the
state (vector) ψ such that,

ψ1 = Bψ, ψ2 = B2ψ. (5.5)

Since the matrix B acts in a 2-dimensional space, it obeys a characteristic equation

B2 − tr(B)B + det(B) = 0, (5.6)

which after multiplying everywhere by ψ, we obtain

B2ψ − tr(B)Bψ + det(B)ψ = 0, (5.7)

or equivalently,
ψ2 − tr(B)ψ1 + det(B)ψ = 0. (5.8)

Making a natural pairing for each term and rearranging the equation into the form
of (5.4), we have

α = det(B), β = − tr(B), γ = 1. (5.9)

Now we need only to know the eigenvalues (and hence the determinant and trace) of
B.

Eigenvalues of Half-monodromy

We will quote the results for the eigenvalues of B from Moore and Seiberg [49].
Before discussing the formulae, one important thing to take into account is that all
concrete results including the values of α, β, and γ depend on the framing of links.
The convention in Moore and Seiberg’s results is that one should pick the same
framing for each diagram on the right in Fig. 18, for instance, a canonical framing
in which a unit vector coming out of the page defines a normal vector field on each
link in the diagrams.

Consider the Lie group G = SU(N), the eigenvalues of B are

λi = ± exp(iπ(2hR − hEi)). (5.10)
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Figure 20: (a) The half-monodromy operation exchanges two equivalent points
on S2, the arrows indicate the process in which the first two points switch places
by executing a half-twist about one another. (b) When the two points on the left
undergo a half-twist about one another, the first diagram becomes the second, and
when this is done again, the second diagram becomes the third. These are clearly
the three diagrams MR, X1, and X2 of Fig. 18 which differ by a succession of
half-monodromies.

Here hR is the conformal weight of the WZW primary field corresponding to the
representation R:

hR =
N2 − 1

2N(k +N)
; (5.11)

hEi is are the weights of the corresponding primary fields where Ei are the irreducible
representations of SU(N) appearing in the decomposition of R ⊗ R: R ⊗ R =⊕s

i=1Ei. The physical Hilbert space H at large k level is s-dimensional. In this case,
s = 2, then H is 2-dimensional (except for k = 1 where it is 1-dimensional). The +

or − sign corresponds to whether Ei appears symmetrically or antisymmetrically in
R⊗R. IfR is theN -dimensional representation of SU(N), then in the decomposition
R⊗R, the symmetric piece is an irreducible representation with hE1 = N2+N−2

N(k+N)
, and

the antisymmetric piece is an irreducible representation with hE2 = N2−N−2
N(k+N)

. One
will find that the eigenvalues of B are

λ1 = exp

(
iπ(−N + 1)

N(k +N)

)
, λ2 = − exp

(
iπ(N + 1)

N(k +N)

)
. (5.12)

By plugging these eigenvalues into (5.9), one finds that

α = − exp

(
2iπ

N(k +N)

)
, β = − exp

(
iπ(−N + 1)

N(k +N)

)
+ exp

(
iπ(N + 1)

N(k +N)

)
, γ = 1.

(5.13)

Dehn Diffeomorphism

The half-monodromy B induces a twist in the framed link segments. This is illus-
trated in Fig. 21. We see that the framing is not the standard framing that we
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Figure 21: A twist is induced in the framing after the operation of half-monodromy
B.

Figure 22: A Dehn twist reverts the framed link to its original framing.

had. Before “gluing” back the manifolds in Fig. 18, we need to fix this by applying
another kind of diffeomorphism, called a Dehn twist, D, to reverse this unwanted
twisting, as indicated in Fig. 22. In conformal field theory, the t-fold Dehn twist acts
on the Hilbert space HR as a multiplication by exp(−2πithR), where hR is again the
conformal weight of the WZW primary field in the R representation. The negative
sign indicates the reverse action.

We know that ψ1 = Bψ in which ψ has a twist in its framing. To untwist ψ1 is
equivalent to multiplying the coefficient of ψ1, β by exp(−2πihR). Similarly, due to
ψ2 = B2ψ, ψ2 has to be untwisted twice and we have to multiply γ by exp(−4πihR).
After these corrections, we get

α = − exp

(
2πi

N(k +N)

)
,

β = − exp

(
πi(2−N −N2)

N(k +N)

)
+ exp

(
πi(2 +N −N2)

N(k +N)

)
,

γ = exp

(
2πi(1−N2)

N(k +N)

)
.

(5.14)

We can simplify all coefficients by multiplying them with a common factor
exp( iπ(N2−2)

N(k+N)
) and making the substitution t = exp( 2πi

k+N
). We will end up with

– 37 –



the Jones polynomial skein relation,

− tN/2Z(L+) + (t1/2 − t−1/2)Z(L0) + t−N/2Z(L−) = 0, (5.15)

where we have used the standard notations of overcrossing, zero crossing, and un-
dercrossing: L+, L0, and L− to replace L, L1, and L2, respectively.

When we restrict to the SU(2) case, the skein relation is

− tZ(L+) + (t1/2 − t−1/2)Z(L0) + t−1Z(L−) = 0, (5.16)

which agrees with (3.12), with the identification,

V (Li) =
Z(Li)

Z(unknotted Wilson loop)
i = +, 0,−. (5.17)

The precise relation between the Jones polynomial and the correlation function of
Wilson loops, for any links L in S3, in SU(2) fundamental representation R = 2 (in
terms of Young tableau), is given by

W2···2(L) = t2 lk(L)

(
t− t−1

t
1
2 − t− 1

2

)
V L(t), (5.18)

as a special case of (3.18). In a similar fashion, the partition function of Wilson loops
Z(L) in CS theory, with different gauge groups, can be used to compute other knot
and link polynomial invariants.

Correlation Function of Unknot

We would like to compute the correlation function of an unknotted Wilson loop C,
W2(C), in S3. Recall that an unknot has no crossings. Although this may seem a
trivial case, it contains some essential features.

The equation (5.4) (and Fig. 19) reduces to the case with a certain number of
unlinked and unknotted circles. This can be sketched as in Fig. 23. The first and
third links consist of a single unknotted circle (unknotted by Reidemeister moves),
and the second consists of two unknotted circles that are unlinked. If we denote
the partition function for s unlinked and unknotted circles C in the fundamental
representation 2 of SU(N) as Z(S3;Cs), then (5.4) amounts to the assertion that

(α + γ)Z(S3;C) + βZ(S3;C2) = 0. (5.19)

To get the corresponding correlation function

W2(C) = Z(S3;C)/Z(S3), (5.20)

we divide throughout (5.19) by partition function for the 3-sphere S3 without links,
Z(S3), and obtain,

(α + γ)W2(C) + βW2(C2) = 0. (5.21)
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Figure 23: The three diagrams are identical outside of the dotted lines, and look
like Fig. 19 inside them.

Figure 24: A 3-sphere S3 with three unlinked and unknotted circles C1, C2, C3

associated with representations R1,R2,R3.

What is the correlation function of the two disjoint circles, W2(C2)? To answer
this question, we use the following relation. For an arbitrary collection of unlinked,
unknotted Wilson loops on S3, as illustrated in Fig. 24, we write the partition
function of S3 with this collection of Wilson loops as Z(S3; C1 . . . Cs). By cutting S3

in various ways to separate the circles, we learn that14

Z(S3; C1 . . . Cs)

Z(S3)
=

s∏
k=1

Z(S3; Ck)

Z(S3)
. (5.22)

and similarly,

W2(C1 . . . Cs) =
s∏

k=1

W2(Ck). (5.23)

Using relation (5.23), we haveW2(C2) = (W2(C))2. This implies that the corre-
lation function of the unknotted Wilson loop in SU(N) fundamental representation
2 is

W2(C) = −α + γ

β
, (5.24)

14The result in (5.22) is deduced from a general formula Z(M) ·Z(S3) = Z(M1) ·Z(M2), which
is also expressed as Z(M)

Z(S3) = Z(M1)
Z(S3) ·

Z(M2)
Z(S3) . This is proved in the introductory part of Section 4 in

Witten (1989) [11].
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which is a rational function in terms of the polynomials α, β, and γ. By comparing
(5.24) and (5.15), we finally have

W2(C) =
tN/2 − t−N/2

t1/2 − t−1/2
. (5.25)

One can easily check that the equation (5.25) for N = 2 can also be obtained through
(5.18) with the unknot satisfying lk(C) = 0, V C(t) = 1, in SU(2) case.

There are several interesting facts about the formula (5.25). First, this formula
is positive for all values of the CS variables N and k. This is required by reflection
positivity of the CS gauge theory in three dimensions. Second, in the weak coupling
limit of k → ∞, we have W2(C) → N . This is easily interpreted; in the weak
coupling limit, the fluctuations in the connection Ai on S3 are irrelevant, and the
vacuum expectation value (vev) of the Wilson loop approaches its value for Ai = 0,
which is the dimension of the representation, or in this case N .

5.2 Framing Dependence of Knots and Links

There is still one ambiguity in the results that we obtained. We have to consider the
self-linking numbers (i.e. framings) of links and knots in S3, which will have effect on
their correlation functions. For the notions of framing, readers may refer to Section
3.3.

Abelian Chern-Simons Theory

We first consider the U(1) abelian CS theory [50] whereby the cubic term in (4.4)
drops out and only a Gaussian theory is left. By evaluating the correlation func-
tion (4.15), contractions of the holonomies corresponding to different knots Kα, Kβ
produces the corresponding integral (3.6). One shall also consider the contractions
of the holonomies round the same knot K, i.e. self-contractions when Kα = Kβ (cf.
(3.7)). By means of a framing, the correlation function that one obtains is a topo-
logical invariant but the price that one has to pay is that the regularisation depends
on a set of cotorsion integers pα = φ(K) = lk(Kα,Kf,α) (one for each knot). The
correlation function (4.15) is then

〈
∏
α

exp(nα

∮
Kα
A)〉 = exp

[
πi

k

(∑
α

n2
α pα +

∑
α 6=β

nαnβ lk(Kα,Kβ)
)]
. (5.26)

This regularisation is simply the “point-splitting” method in the context of QFT.

SU(N) Chern-Simons Theory

We can now generalise the abelian case to nonabelian CS theory with gauge group
SU(N). The same kind of ambiguities arise in the self-contractions of the Wilson
loop holonomies, i.e. a choice of framing has to be made for each knot Kα. The only
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Figure 25: A 3-manifoldM is separated into two pieces, ML andMR with Σ as
their common boundaries.

difference from the abelian case is that the self-contraction of Kα gives a group factor
TrRα(TaTa), where Ta is a basis (generator) of the Lie algebra g = su(N).

Our physical result, i.e. the evaluation of vev of the product of Wilson loops
in CS theory, depends on the framing that we pick for knots and links. In general,
there is no canonical framing (zero self-linking number) in the set of possible framings
of knots and links in a 3-manifold. However, we are fortunate to have a canonical
framing for knots and links in S3. If one compares two framings, they always differ
by a definite integer, which is the relative twist in going around the knots or links
(Fig. 8b). Hence, for any other framing of Kα differ from the canonical framing by
tα units, the vev will pick up a phase, i.e.

WR1...RL → exp

[
2πi

L∑
α=1

tαhRα

]
WR1...RL . (5.27)

5.3 Surgery Relation

Let us describe the operation of surgery on links on an arbitrary 3-manifold M
(instead of S3 that we have discussed). The idea here is that the computations of
invariants on any 3-manifold can be reduced to S3. We begin with an arbitrarily se-
lected link L (without any Wilson loop associated with it) embedded in a 3-manifold
M. We first thicken L to a tubular neighbourhood, a solid torus U centered on L.
Removing U, M is Heegaard split into two pieces, with MR being the solid torus
U and ML being the remainder, as indicated in Fig. 25. We then make a diffeo-
morphism K on the boundary ofMR, Σ, and gluesML andMR back together to
obtain a new 3-manifold M̃. The aim of this section is to prove that computations
on M̃ are equivalent to computations onM with a physical Wilson line where the
surgery was made.

Verlinde [8] showed that if Σ is a Riemann surface of genus one, then the dimen-
sion of the physical Hilbert space HΣ is t, the number of integrable highest weight
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Figure 26: A basis of the physical Hilbert space is indicated consisting of states
obtained by placing a Wilson loop in the Ri representation, in the interior of U(=

MR), parallel to the non-contractible cycle b, and performing the path integral to
get a vector vi in HR.

representations of a loop algebra15 Lg at level k. Moreover, though there is no canon-
ical basis forHΣ, Verlinde showed that every choice of a homology basis for H1(Σ;Z),
consisting of two cycles a and b, gives a canonical choice of basis in HΣ. In general,
the properties of HΣ are just like those of H1(Σ;Z).

To proceed, we place a Wilson loop in Ri (i = 0, . . . , t− 1) representation in the
interior of the solid torus U, running in the direction of non-contractible cycle b, and
perform the path integral in U to define a vector vi in HR (as indicated in Fig. 26).
The vi make up the Verlinde basis in HR. It is known that a Wilson loop in the
trivial representation R0 is equal to 1, so the vector v0 here is the same as the vector
obtained by a path integral on U without Wilson loops. The partition function of
M is then Z(M) = (χ, v0) for a vector χ in HL.

A diffeomorphism K on Σ of MR is represented in the Verlinde basis by an
explicit matrix Kij:

K · vi =
∑
j

Kijvj (5.28)

Gluing back to make M̃, we have the partition function of M̃ as Z(M̃) = (χ,Kv0).
Using (5.28), we can write

Z(M̃) =
∑
j

K0j(χ, vj). (5.29)

15A loop algebra Lg is an infinite-dimensional algebra, defined by the tensor product of the usual
Lie algebra g with C∞(S1), the algebra of smooth complex functions over S1: Lg = g ⊗ C∞(S1),
with the Lie bracket given by [g1⊗f1, g2⊗f2] = [g1, g2]⊗f1f2 for g1, g2 ∈ g, f1f2 ∈ C∞(S1). It can
be thought of in terms of a smooth map from S1 to g, i.e. a smooth parametrised loop in g. More
technically, one considers the affine Lie algebra ĝ that is obtained by adding one extra dimension
to the loop algebra Lg and modifying the Lie bracket in a nontrivial way, which physicists call a
quantum anomaly of the WZW model and mathematicians a central extension.
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Just as (χ, v0) represents the original partition function of M, we can have (χ, vj)

representing Z(M;Rj), a modified partition function of M with an extra Wilson
loop in the Rj representation placed on L (in addition to whatever Wilson loops are
already present onM). Hence we can rewrite (5.29) as

Z(M̃) =
∑
j

K0jZ(M;Rj). (5.30)

We have so far only considered a link L without a Wilson loop before the surgery.
What if before the surgery a Wilson loop in theRi representation was already present
on L? Surgery amounts to cutting out a tubular neighbourhood U =MR of L and
then gluing it back in, and after this process the Ri Wilson loop will still be present
in M̃. So the left-hand side of (5.30) is replaced by Z(M̃;Ri). We now consider
the right-hand side of (5.30). Before surgery, with a Wilson loop Ri on L, the path
integral onM of L gives on the boundary Σ a state vi (a generalisation of v0). When
we cut out U and glue it back in with a diffeomorphism K on Σ, then vi is replaced
with Kijvj. So the right-hand side of (5.30) becomes

∑
jKijZ(M;Rj) and we get

the generalised surgery relation,

Z(M̃;Rj) =
∑
j

KijZ(M;Rj). (5.31)

The matrix Kij is expressed in terms of the irreducible level k representations of Lg
(or the integrable representations of the affine Lie algebra ĝ).

5.4 Manifold Invariant from Chern-Simons Theory

We have so far left out the partition function of S3 without Wilson loops, Z(S3),
in our discussion. In this section, we are going to determine it. It may come as a
surprise to topologists that we cannot trivially assert that this is 1.

Partition Function of S2 × S1

In TQFT, there are no particularly strong axioms governing Z(S3). There are,
however, axioms for partition function of manifold of the form X × S1, for various
manifolds X. The upshot is that S3 can be obtained from S2×S1 through a surgery,
which we will later explain.

Our starting point is to study X × S1 in a Hamiltonian formalism, as indicated
in Fig. 27a. We construct a physical Hilbert space HX of X. Then, we introduce a
“time” t direction, represented by a unit interval [0, 1], which we will propagate the
vectors in HX from t = 0 to t = 1. This operation is trivial, since the Chern-Simons
theory, like any generally covariant theory, has a vanishing Hamiltonian. Finally, we
form X × S1 by joining X × {0} to X × {1}. This identifies the initial and final
states, giving a trace:

Z(X × S1) = TrHX (1) = dim(HX). (5.32)
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(a) (b) (c)

Figure 27: (a) Beginning with X × I, one makes X × S1 by identifying X × {0}
with X×{1}. Diagram in (b) is constructed when X is S2 with some marked points
pi. If S2 × {0} is glued to S2 × {1} via a nontrivial diffeomorphism B, one makes in
this way S2 × S1 with a braid, as in (c).

The trace of the identity operator 1 in HX is due to the use of the canonical framing
of the Wilson loop which is invariant under rotations of S1. For instance, the physical
Hilbert space of S2 is 1-dimensional16 for any Lie group G and level k, so we have

Z(S2 × S1) = 1. (5.33)

It is possible to generalise (5.32) as follows. Given a diffeomorphismK : X → X,
we can form the mapping cylinder X ×K S1 by identifying x × {1} with Kx × {0}
for every x ∈ X. In the framework of QFT, going from X× I to X×K S1, the initial
and final states are identified via K, so the generalisation of (5.32) is

Z(X ×K S1) = TrHX (K). (5.34)

The situation that we actually wish to consider is whenX is S2 with some marked
points pa, a = 1, . . . , s to which representations Ri(a) are assigned (for a = 1, . . . , s,
i(a) is one of the values 0, . . . , t−1 corresponding to integrable representations of the
loop algebra associated to G at level k.). In particular, we have S2 × S1 with some
Wilson loops which are unknotted, parallel circles of the form pa×S1, as sketched in
Fig. 27b and Fig. 27c. As an analogue of (5.32), the partition function of S2 × S1,
Z(S2 × S1; 〈R〉), and the Hilbert space of S2 with charges in the representation Rai

are related by
Z(S2 × S1; 〈R〉) = dim(HS2; 〈R〉). (5.35)

There are some special cases which we need to consider to determine the partition
function of S3.

16There are no flat connections on S2 and the quantisation is trivial. There is just a unique state:
dim(HS2) = 1.
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1. If the collection of representations 〈R〉 consists of a single representation Ra,
we get

Z(S2 × S1;Ra) = δa,0 (5.36)

since the physical Hilbert space with a single charge in the Ra representation is
one dimensional if Ra is the trivial representation (a = 0) and zero dimensional
otherwise.

2. For two charges in the representations Ra and Rb, we get

Z(S2 × S1;Ra,Rb) = gab, (5.37)

where the “metric” gab is 1 if Rb is the dual of Ra and zero otherwise.

3. If there are three charges in the representations Ra, Rb, Rc, we get

Z(S2 × S1;Ra,Rb,Rc) = Nabc (5.38)

with the trilinear “coupling” (or “structure constant”) Nabc of Verlinde [8], which
is the dimension of the physical Hilbert space.

Surgery and S-transformation

We will try to perform a surgery on S2 × S1 to make S3. The procedure, as usual,
begins with picking a circle C in S2 × S1 as depicted in Fig. 28a. We then remove
the solid torus U (the tubular neighbourhood of C) from S2 × S1. Notice that a
solid torus U (Fig. 28b) embedded in R3, has a torus T2 as its boundary. Moreover,
the torus T2 is invariant under inversion, so that its exterior (including the point at
infinity) is a second solid torus U′. To be precise, U′ is a translate of U in Euclidean
space.

We will now have two identical solid tori, as depicted in Fig. 28c. Since a solid
torus U is D × S1 (D a 2-dimensional disc) and U′ is D′ × S1, when we glue them
along their boundary with the identity map, we obtain S2 × S1. This follows from
the fact that the two discs D and D′ glued on their boundary make S2.

This surgery shows that we get back S2 × S1, but it is not what we wanted. If
we do the gluing, however, after performing an S-transformation on the T2, the
resulting manifold will be instead S3. The complement of a solid torus U inside
S3 is indeed another solid torus U′ whose non-contractible cycle b is homologous to
the contractible cycle a in the first torus. The action of S-transformation on this
homology basis exchanges the 1-cycles a and b of T2. Specifically it is given by a
matrix S =

(
0 −1
1 0

)
that maps a to −b and b to a.

The action of S-transformation can be lifted to the physical Hilbert space of the
torus HT2 (we will discuss in detail in Section 5.7). For G = SU(2), in the Verlinde
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(a) (b)

(c)

Figure 28: (a) A surgery is performed on a circle C in S2 × S1. (b) Sitting in R3,
a torus T2, with its interior, makes up a solid torus U that has a contractible cycle
a and a non-contractible cycle b. (c) A pair of identical solid tori.

basis or more precisely, the basis of the characters of integrable representations of
affine Lie algebra, the matrix elements Sij are given very explicitly as

Sij =

√
2

k + 2
sin
((i+ 1)(j + 1)π

k + 2

)
. (5.39)

Partition Function of S3

Deducing from the surgery relation (5.30), we have a relation between the partition
function of S3 and that of S2 × S1,

Z(S3) =
∑
j

S0
jZ(S2 × S1;Rj) (5.40)

We have learned from (5.36) that Z(S2 × S1;Rj) is 1 for j = 0 and 0 otherwise, so

Z(S3) = S00. (5.41)

For G = SU(2), the value of S00 can be determined from (5.39) and we get

Z(S3) =

√
2

k + 2
sin
( π

k + 2

)
. (5.42)
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5.5 Framing Dependence of Three-manifolds

We have built S3 from S2×S1, by performing surgery on a certain circle C, using the
modular transformation S : τ → −1/τ , where τ parametrises a torus T2. Apart from
S, there are other modular transformations that could be used to get S3 by surgery
on the same circle C in S2 × S1. The general choice would be T nSTm, with n and
m being arbitrary integers, and T being the modular transformation T : τ → τ + 1.
In fact, S transformation, together with the T transformation (T =

(
1 1
0 1

)
), generate

the modular group PSL(2,Z) = SL(2,Z)/Z2. The PSL(2,Z) transformation is a
special class of homeomorphism of a torus.

Had we used T nSTm, we would have obtained not (5.41) but

Z(S3) = (T nSTm)00. (5.43)

In the Verlinde basis vi, T is a diagonal matrix with T ·vi = exp (2πi(hRi − c/24)) · vi,
where hRi is the conformal weight of WZW primary field in the Ri representation
and c is the central charge for affine Lie algebra17 with symmetry group G at level
k. For G = SU(N), c = k dim G

k+h∨
= k(N2−1)

k+N
. Since hR0 = 0, if we replace (5.41) by

(5.43), the partition function transforms as

Z → Z · exp (2πi(n−m) · c/24). (5.44)

This transformation is obtained in a particular surgery, giving S3 from S2 × S1, in
the canonical framing.

In a general 3-manifoldM, one considers the surgery on the same circle C, being
determined by an PSL(2,Z) element u · Tm. This would have the same effect topo-
logically, but the partition function will contain an extra phase exp (−2πim · c/24).
Hence two surgeries that have the same effect on the topology of a 3-manifold may
have different effects on the framing.

Witten considered framed 3-manifolds rather than garden-variety 3-manifolds
when he resolved phase ambiguities in the CS partition function, so that it gives
invariants of links and manifolds upon regularising the CS theory [11]. A framed
3-manifold is a compact oriented 3-manifold equipped with framings. Recall that
for a framed link L, it means that we fix a trivialisation of its normal bundle in the
3-manifoldM. For a framed 3-manifoldM means that we fix a trivialisation of the
tangent bundle.

To be precise, a framing (also called the 2-framing) of a 3-manifold M is
a homotopy class of trivialisations of the tangent bundle 2TM = TM⊕ TM (as
a Spin(6) bundle)18. Two framings are said to be equivalent if they are ambient
isotopic after being included diagonally into the frame bundle F (TM⊕ TM). This

17The affine Lie algebra is also known by the term current algebra in Witten (1989) [11].
18The tangent bundle 2TM has a natural spin structure arising from the lift to Spin(6) of the

diagonal embedding SO(3) ↪→ SO(3)× SO(3) ↪→ SO(6). Since TM is trivial, so is 2TM.
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equivalence relation sees π3(SO(3)) but not π1(SO(3)), since the diagonal inclusion
SO(3) ↪→ SO(3)⊕ SO(3) ⊂ SO(6) is zero on π1.

From another point of view, the framings are the sections of the frame bundle
F (TM). To see why, we define a framing of M to be a real singular cycle in the
singular 3-chain group C3(F (TM), ∂F (TM);R) which projects to a representative
of the fundamental class in the third homology group H3(M, ∂M;R). A section of
F (TM) clearly gives rise to such a cycle. Framings α and β are considered equivalent
if α−β is a boundary (null-homologous cycle) in C3(F (TM);R). Notice that in order
for α−β to be a cycle we must have ∂α = ∂β. A detailed explanation on 2-framings
can be found in Atiyah (1990) [51].

5.6 Diagonalisation of Fusion Rules

We have found that the partition function of S3 is the (0,0)-component of the S-
transformation, Z(S3) = S00. We can go further and add an unknotted Wilson
loop on S3 in an arbitrary representation Rj and determine its partition function
Z(S3;Rj). To do this, we start on S2×S1 with a Wilson loop in theRj representation
running parallel to the circle C on which we are doing surgery, as indicated in Fig.
29a. Carrying out the same surgery as before turns S2 × S1 into S3, with a Wilson
loop in the Rj representation on S3. Application of (5.30) now gives

Z
(
S3;Rj

)
=
∑
i

S0
iZ
(
S2 × S1;Ri, Rj

)
(5.45)

The right-hand side of this equation can be evaluated using (5.37). The partition
function for a Wilson loop in an arbitrary Rj representation is then

Z
(
S3;Rj

)
=
∑
i

S0
igij = S0j. (5.46)

If we represent the correlation function WR as a ratio WR = Z (S3;R) /Z (S3), as in
(5.20), and take G = SU(2) with R = 2, the fundamental representation of SU(2),
then the formula (5.39) gives

W2 =
S01

S00

=
sin(2π/(k + 2))

sin(π/(k + 2))
(5.47)

It is easy to check that setting N = 2 in (5.25) gives the same equation.
Taking this one step further, we can calculate by the same methods the par-

tition function Z (S3;Rj,Rk) for S3 with two unknotted, unlinked Wilson loops in
representations Rj and Rk. As in Fig. 29b we start on S2 × S1 with two Wilson
loops in representations Rj and Rk, parallel to the circle C on which surgery is to
be performed. Carrying out the surgery, we get to S3 with the desired unlinked,
unknotted circles. The surgery relation (5.30) tells us that

Z
(
S3;Rj,Rk

)
=
∑
i

S0
iZ
(
S2 × S1;Ri,Rj,Rk

)
(5.48)
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(a) (b)

Figure 29: In (a), in parallel to the circle C on which we perform surgery, there is
a circle C ′ on which we place a Wilson loop in the Rj representation. In (b), there
are two parallel circles C ′ and C ′′ with Wilson loops in representations Rj and Rk.

The right-hand side can be evaluated with (5.38), while the left-hand side can be
reduced to (5.46) using (5.22). We get

S0jS0k

S00

=
∑
i

S0
iNijk (5.49)

This equation is a special case of a celebrated conjecture by Erik Verlinde,

SijSik
S0i

=
∑
l

Si
lNljk, (5.50)

which has been proved by Moore and Seiberg [49] and Witten [11]. This equation
is given the name Verlinde formula and is one of the most important results in
CFT. It is interpreted as in Verlinde’s statement that “the modular transformation
S diagonalises the fusion rules” [8].

To verify the statement, we notice that in the Verlinde basis vi, the structure
constants of the Verlinde algebra are by definition vivj =

∑
kNij

kvk, where Nij
k =∑

lNijlg
lk. If we introduce a new basis wi = S0i ·

∑
r Si

rvr, then

wiwj =
∑
k,l

Si
kSj

lvkvl · S0iS0j. (5.51)

Using vkvl =
∑

mNkl
mvm and the Verlinde formula (5.50), this becomes

wiwj =
∑
l,m

Sj
lvm · SilSim · S0j (5.52)

Using the unitarity of S, in the form
∑

l Sj
lSil = δij, we see that

wiwj = δij
∑
m

Sj
mvm · S0j = δij · wj (5.53)

showing that the Verlinde algebra has been diagonalised and that the wi are idem-
potents.
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The outstanding importance of the Verlinde formula can be seen in the fact that
it combines local as well as global properties in CFT: the fusion numbers Nijk contain
information about the local OPE of two fields whereas the modular transformation
S is related to the global modular invariance of partition functions on the torus!

5.7 Knots and Links Revisited

In this section, we will look at how computation of the vevs of some knots and links
in S3 are done using the theory of affine Lie algebra. We denote a state in the Hilbert
space of torus HT2 as |R〉 in which |R〉 = |ΨU,WR(A)〉, the wavefunction given by the
CS path integral on the solid torus U with the insertion of a Wilson loop operator
WR in the representation R around the non-contractible cycle:

ΨU,WR(A) = 〈A|ΨU,WR〉 =

∫
A|Σ=A

DAeiSWR. (5.54)

In particular, the path integral over U with no operator insertion gives |0〉, the
“vacuum” state.

The partition function on a 3-manifoldM is given by Z(M) = 〈ΨM2|Uf |ΨM1〉
where Uf is an operator acting on the Hilbert space HΣ of the boundary Σ and is a
representation of the diffeomorphism f : Σ→ Σ. The 3-manifoldM is a connected
sum of the two 3-manifoldsM1 andM2 glued together by the homeomorphism f ,
i.e. M =M1 ∪fM2.

As mentioned before, if we perform a surgery on two solid tori by gluing them
along their boundary Σ (i.e. a torus T2) with the identity map, we obtain S2 × S1.
The partition function is then

Z(S2 × S1) = 〈0|0〉 = 1, (5.55)

which is what we had in (5.33). If we perform an S-transformation on the boundary
T2 before gluing the two solid tori, we get S3 with its partition function

Z(S3) = 〈0|S|0〉 = S00. (5.56)

Some Notions of Affine Lie Algebra

To evaluate S00, instead of using the formula in (5.39), we now turn to the more
complicated theory of affine lie algebra which applies for any Lie group G. Recall
that HΣ is the space of conformal blocks of a WZW model on the boundary Σ

with gauge group G and level k. For Σ = S2, the space of conformal blocks is
one-dimensional, so HS2 is spanned by a single element. For Σ = T2, the space of
conformal blocks is in one-to-one correspondence with the integrable representations
of the affine Lie algebra associated to G at level k. The states |R〉 in HT2 are the
integrable representations of the WZW model at level k.
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It is instructive to introduce the following notations that we will use. The funda-
mental weights of G will be denoted by λi, and the simple roots by αi, i = 1, · · · , r,
where r denotes the rank of G. |∆+| denotes the number of positive roots of the root
system ∆, given by (|G| − r)/2, where |G| is the order of G. The weight and root
lattices of G are denoted, respectively, by Λw and Λr. The fundamental chamber Fl
of the weight lattice of G is given by Λw/lΛr, where l = k + h∨, modded out by the
action of the Weyl group. For example, in SU(N) a weight p =

∑r
i=1 piλi is in Fl if

r∑
i=1

pi < l and pi > 0, i = 1, · · · , r. (5.57)

A representation given by a highest weight Λ is integrable if ρ + Λ is in the fun-
damental chamber Fl. Here ρ denotes the Weyl vector, given by the sum of the
fundamental weights or the half-sum of the positive roots. The state |R〉 in HT2 is
also denoted by |p〉 = |ρ+ Λ〉, where ρ+ Λ ∈ Fl, as we have stated, is an integrable
representation of the WZW model at level k. The state |ρ〉 will be denoted by |0〉.
The states |R〉 can be chosen to be orthonormal, i.e. 〈R|R′〉 = δRR′ [11, 52].

Explicit Calculations

The elements of modular transformation matrix S in the basis of integrable repre-
sentations is given by

Spp′ =
i|∆+|

(k + h∨)r/2

(
Vol Λw

Vol Λr

) 1
2 ∑
w∈W

ε(w) exp

(
− 2πi

k + h∨
p · w (p′)

)
. (5.58)

In this equation, ε(w) is the determinant of the action of w on the Cartan subalgebra
h ⊂ g. This is equal to (−1)`(w), where `(w) is the length of the Weyl group element
w, defined to be the minimal number of reflections with respect to simple roots
such that w equals the product of those reflections. The volume of the weight (root)
lattice is denoted by Vol Λw (Vol Λr). Often, SRR′ is written for Spp′ , where p = Λ+ρ,
p′ = Λ′ + ρ and Λ,Λ′ are the highest weights corresponding to the representations
R,R′.

In the case of G = SU(2), we have Λ + ρ = a
2
(1,−1) + 1

2
(1,−1) and the Weyl

reflection w exchanges 1 and −1. We will then obtain

Sab =
i

(k + 2)1/2

(
1

2

)1/2 [
exp

(
2πi

k + 2

(a+ 1)(b+ 1)

2

)
− exp

(
− 2πi

k + 2

(a+ 1)(b+ 1)

2

)]
=

√
2

k + 2
sin
((a+ 1)(b+ 1)π

k + 2

)
,

(5.59)
which is exactly equation (5.39).
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By using Weyl denominator formula,∑
w∈W

ε(w) ew(ρ) =
∏
α∈∆+

2 sinh
α

2
, (5.60)

where α > 0 are positive roots, one finds

Z(S3) = S00 =
1

(k + h∨)r/2

(
Vol Λw

Vol Λr

) 1
2 ∏
α∈∆+

2 sin

(
π(α · ρ)

k + h∨

)
. (5.61)

The above result can be generalised in order to compute correlation functions in
S3 with some knots and links. Consider a solid torus U where a Wilson loop in
representation R has been inserted. The corresponding state is |R〉, as we explained
before. If we now glue this to an empty solid torus after an S-transformation, we
will obtain an unknot in S3. The partition function with the insertion is then

ZR = 〈0|S|R〉 = S0R. (5.62)

It follows that the correlation function for the unknot in S3, in representation R, is
given by

WR(unknot) =
ZR
Z(S3)

=
S0R

S00

=

∑
w∈W ε(w) e−

2πi
k+h∨ ρ·w(Λ+ρ)∑

w∈W ε(w) e−
2πi
k+h∨ ρ·w(ρ)

. (5.63)

This expression can be written in terms of characters of the group G. By using Weyl
character formula19:

chΛ(a) =

∑
w∈W ε(w) ea·w(Λ+ρ)∑
w∈W ε(w) ea·w(ρ)

, (5.64)

we can write
WR(unknot) = chR

(
− 2πi

k + h∨
ρ

)
. (5.65)

Moreover, using Weyl denominator formula we finally obtain

WR(unknot) =
∏
α∈∆+

sin
(

π
k+h∨

α · (Λ + ρ)
)

sin
(

π
k+h∨

α · ρ
) . (5.66)

This quantity is often called the quantum dimension of R, denoted by dimqR.
We can also consider a solid torus with a Wilson loop in representation R glued

to another solid torus with the representation R′ via an S-transformation. What we
obtain is clearly a link in S3 with two components, which is the right-handed Hopf
link with linking number +1. The partition function with this insertion is:

ZRR′ = 〈R′|S|R〉 , (5.67)
19The character of the representation R evaluated on an element a ∈ Λw ⊗ R is defined by

chR(a) =
∑
µ∈MR

ea·µ, where MR is the set of weights associated to the irreducible representation
R.

– 52 –



so the correlation function is

WRR′ ≡ WRR′
(
Hopf+1

)
=
SR′R
S00

=
S−1
R′R
S00

, (5.68)

where the superscript +1 refers to the linking number. Here, we have used that
the bras 〈R| are canonically associated to conjugate representations R, and that
SR′R = S−1

R′R. The invariant of the left-handed Hopf link with linking number −1

can be obtained by noticing that the two Hopf links are related by changing the
orientation of one of the components. We then have

WRR′
(
Hopf−1

)
=
SR′R
S00

(5.69)

using the property that TrR UK−1 = TrR U
−1
K = TrR UK. When we take G = U(N),

the above vevs for unknots and Hopf links can be evaluated explicitly in terms of
Schur polynomials, which gives the character of the unitary group in the repre-
sentation R. The results were shown to be related to the HOMFLY polynomial in
Morton and Lukac (2003) [53].

One may realise that although CS theory is exactly solvable, in practice the
computation of vevs for knots and links can be complicated. The procedure of getting
the skein relation becomes cumbersome if the number of steps becomes very large.
Moreover, although one can write down skein relations for arbitrary representations,
they do not determine uniquely the value of the invariant, and hence other techniques
are needed.

A particularly useful framework to compute knot invariants is the formalism of
knot operators (Labastida et al., 1991 [54]). In this formalism, one constructs oper-
ators that “create” knots wrapped around a Riemann surface Σ in the representation
R of the gauge group associated to the highest weight Λ:

WK
Λ : H(Σ)→ H(Σ). (5.70)

The topology of Σ restricts the type of knots that one can consider. So far, these
operators have been constructed only in the case when Σ = T2, which we are going
to discuss next.

5.8 Torus Knots

We are going to discuss the computation of the correlation functions of knots that
are put on the surface of a torus, known as torus knots. They are labelled by
two coprime integers (n,m) that specify the number of times that they wrap the two
cycles of the torus. Here, n refers to the winding number around the non-contractible
cycle of the solid torus U, while m refers to the contractible one. For instance, the
trefoil knot 31 is the (2, 3) torus knot, and the knot 51 is the (2, 5) torus knot. The
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operator that creates the (n,m) torus knot in the representation associated to Λ will
be denoted by W (n,m)

Λ , and it has a fairly explicit expression for G = SU(N):

W
(n,m)
Λ |p〉 = e2πinmhρ+Λ

∑
µ∈MΛ

exp

(
iπµ2 nm

k +N
+ 2πi

m

k +N
p · µ

)
|p+ nµ〉. (5.71)

Here, |p〉 is an arbitrary state in HT2 , and MΛ is the set of weights corresponding
to the irreducible representation with highest weight Λ. The factor involving the
conformal weight hρ+Λ is introduced in order to obtain the invariant in the canonical
framing.

We compute the vev of the Wilson loop around a torus knot in S3 in a similar
surgery as we have done before. First, we make a Heegaard splitting of S3 into two
solid tori. Then, we put the torus knot on the surface of one of the solid tori by acting
with the knot operator (5.71) on the vacuum state |ρ〉. Finally, we glue together the
tori by performing an S-transformation. The correlation function of the Wilson loop
is then given by:

〈W (n,m)
Λ 〉 =

〈ρ|SW (n,m)
Λ |ρ〉

〈ρ|S|ρ〉
. (5.72)

There is also a more compact way to write (5.72). When the operatorW (n,m)
Λ acts on

the vacuum state |ρ〉, the right-hand side of (5.71) is a linear combination of states
of the form |ρ+nµ〉, where µ ∈MΛ. The corresponding weights have representatives
in the Weyl alcove20 Al that can be obtained by a series of Weyl reflections. In other
words, given n and µ, there is a weight ρ+ξ in Al and a Weyl reflection wξ ∈ W such
that ρ + nµ = wξ(ρ + ξ). We will denote the set of representatives of the weights
ρ + nµ in Al by M(n,Λ). Then, the CS invariant of a torus knot (n,m) can be
written as:

e2πinmhρ+Λ

∑
ρ+ξ∈M(n,Λ)

ε (wξ) exp

(
iπm

n(k +N)
ξ · (ξ + 2ρ)

)
chξ

(
− 2πi

k +N
ρ

)
. (5.73)

Since the representatives ρ+ ξ live in Al, the weights ξ can be considered as highest
weights for a representation, hence the character in (5.73) makes sense.

As an example, we compute the invariant of a torus knot (n,m) in the funda-
mental representation, where Λ = λ1. By performing Weyl reflections, M(n, λ1) is
given by the following weights [55]:

ρ+ (n− i)λ1 + λi, i = 1, · · · , N. (5.74)

20Weyl alcove is a subset of the Weyl chamber. In fact, each Weyl chamber is a union of alcoves.
Sharing a similar construction with the Weyl chambers – the connected components of an open set
obtained by removing the finitely many hyperplanes from a finite dimensional real Euclidean space
V – removing all hyperplanes in H (a collection of all affine hyperplanes) from V leaves an open
set whose connected components are called the Weyl alcoves.
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The characters are just the quantum dimensions of the weights (5.74), and skipping
the details we have the following result:

W (n,m)
2 =q

1
2λ−

1
2

(λq−1)
(m−1)(n−1)

2

qn − 1

×
∑

p+i+1=n
p, i≥0

(−1)iqmi+
1
4

(p(p+1)−i(i+1))

∏i
j=−p (λ− qj)

[i]![p]!
,

(5.75)

where [x]! = [x][x − 1] · · · [1] are the q-factorials with [x] = q
x
2 − q−

x
2 being the

q-numbers. If we divide by the vev of the unknot, we find the expression for the
HOMFLY polynomial first obtained by Jones (1987) [56]. For instance, one has, for
the trefoil:

W (2,3)
2 =

1

q
1
2 − q− 1

2

(−2λ
1
2 + 3λ

3
2 − λ

5
2 ) + (q

1
2 − q−

1
2 )(−λ

1
2 + λ

3
2 ). (5.76)

With more effort, one can write down formulae for the invariants of torus knots
and links in arbitrary representations, as shown in the works of Labastida et al.
[55, 57, 58], although they are rather complicated. They afford, however, a systematic
computation of the invariants of these knots. For the trefoil in representations with
two boxes one finds:

W
(2,3)

=
(λ− 1)(λq − 1)

λ(q
1
2 − q− 1

2 )2(1 + q)

(
(λq−1)2(1− λq2 + q3

− λq3 + q4 − λq5 + λ2q5 + q6 − λq6)
)
,

W
(2,3)

=
(λ− 1)(λ− q)

λ(q
1
2 − q− 1

2 )2(1 + q)

(
(λq−2)2(1− λ− λq

+ λ2q + q2 + q3 − λq3 − λq4 + q6)
)
.

(5.77)
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