Chern-Simons Theory and Knot Polynomials

Kevin Loo
YMSC, Tsinghua University
SUPERSYMMETRY AND SUPERGRAVITY
AUTUMN 2020

Quantum Field Theory and the Jones Polynomial *

Edward Witten **

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

1990 Fields Medalists:
Edward Witten, Shigefumi Mori, Vaughan Jones, Vladimir Drinfeld

Overview

(1) Knot Theory: Knots and Links
(2) Chern-Simons Theory: A TQFT
(3) Knot Polynomial Invariant from CS Theory
(4) 3-Manifold Invariant from CS Theory

What are knots and links?

- Knot \mathcal{K} : a smooth embedding of codimension 2 in a 3 -manifold \mathcal{M}, that is diffeomorphic to S^{1}.
Formally, \mathcal{K} is a simple closed curve (also known as Jordan curve) that is a nearly injective and continuous function $\mathcal{K}:[0,1] \rightarrow \mathcal{M}$, with the only "non-injectivity" being $\mathcal{K}(0)=\mathcal{K}(1)$.
- Link \mathcal{L} : a smooth embedding into a 3-manifold \mathcal{M} that is diffeomorphic to a finite disjoint union of knots: $\mathcal{L}=\mathcal{K}_{1} \sqcup \mathcal{K}_{2} \sqcup \cdots \sqcup \mathcal{K}_{n}$.

$$
\phi^{\circ} \cdot \frac{\theta}{\theta}
$$

Knot \& link diagrams

31

- A knot/link diagram D is the projection of a knot/link onto a plane with crossings indicated
- Standard notation: x_{n}^{L}
x : crossing number,
L : number of components (only for links with $L>1$),
n : number used to enumerate knots and links in a given set characterized by x and L

Tait knot table

$$
\begin{aligned}
& \text { " } \left.\cos ^{\circ}\right)^{\circ} \\
& \text { " } 8 \\
& \text { " } 8 \\
& \text { "努" "8 "8 " "8 " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } 8 \text { " } 8 \text { "(1)" " } 8
\end{aligned}
$$

Ambient isotopy

Two links \mathcal{L} and \mathcal{L}^{\prime} are ambient isotopic if there is a smooth map $\alpha:[0,1] \times \mathcal{M} \rightarrow \mathcal{M}$ such that for each value $t \in[0,1]$, the map $\alpha(t, \cdot): \mathcal{M} \rightarrow \mathcal{M}$ is a diffeomorphism, and $\alpha(0, \cdot)$ is the identity map on \mathcal{M}, while $\alpha(1, \cdot)$ maps \mathcal{L} to \mathcal{L}^{\prime}.

Are all the knots the same (ambient isotopic) as the unknot/circle?

Reidemeister moves

- In the 1930s, Reidemeister first rigorously proved that knots exist, which are distinct from the unknot.
- He did this by showing that all knot deformations can be reduced to a sequence of three types of "moves".

Theorem (Reidemeister's theorem)

Two knots/links can be continuously deformed into each other iff any diagram of one can be transformed into a diagram of the other by a sequence of Reidemeister moves.

Reidemeister's theorem guarantees that moves I, II, and III correspond to ambient isotopy of knot/link diagrams.

Figure-eight knot is amphichiral.

Invariants

- Linking number:

$$
\operatorname{Ik}\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right)=\frac{1}{2} \sum_{p \in D} \epsilon(p)
$$

for all crossing points p in D with $\epsilon(p)= \pm 1$ being a sign associated to the crossings.

- The linking number of a link \mathcal{L} with components $\mathcal{K}_{\alpha}, \alpha=1, \ldots, L$ is $\operatorname{lk}(\mathcal{L})=\sum_{\alpha<\beta} \operatorname{lk}\left(\mathcal{K}_{\alpha}, \mathcal{K}_{\beta}\right)$.

The left-handed trefoil knot

The right-handed trefoil knot

- In terms of the Gauss linking integral,

$$
\operatorname{Ik}\left(\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}\right)=\frac{1}{4 \pi} \oint_{\mathcal{L}_{\alpha}} d x^{\mu} \oint_{\mathcal{L}_{\beta}} d y^{\nu} \epsilon_{\mu \nu \rho} \frac{(x-y)^{\rho}}{|x-y|^{3}},
$$

where the distance $|x-y|$ is computed by means of the flat (Euclidean) metric of \mathcal{M}.

- This integral is well-defined and finite except near $x=y$.
- $\alpha=\beta$ (self-linking)?

- The framing of a link $\mathcal{L} \subset \mathcal{M}$ is a normal vector field n on \mathcal{L}, such that $n_{p} \notin T_{p} \mathcal{L}$ for all $p \in \mathcal{L}$.
- Displacing \mathcal{L} slightly in the direction of framing, one gets a new link, called a framed link, \mathcal{L}_{f}, in the tubular neighbourhood of \mathcal{L} (tubular neighbourhood \mathcal{L} is simply a torus whose core is \mathcal{L}).

(A) Knot Diagram

(B) Framed Knot

(C) Blackboard Framing
- Self-linking number/cotorsion/writhe is the linking number of a link and its framing, Ik $\left(\mathcal{L}, \mathcal{L}_{f}\right)$.
- Also defined as a t-fold twist in the framing of \mathcal{L}.

$$
\begin{aligned}
& \phi(\mathcal{L})=\operatorname{Ik}\left(\mathcal{L}, \mathcal{L}_{f}\right)=t(\mathcal{L}) \\
& \phi(\mathcal{L})=\frac{1}{4 \pi} \oint_{\mathcal{L}} d x^{\mu} \oint_{\mathcal{L}_{f}} d y^{\nu} \epsilon_{\mu \nu \rho} \frac{(x-y)^{\rho}}{|x-y|^{3}}
\end{aligned}
$$

Polynomial invariants

- Jones polynomial of an oriented link $\mathcal{L}, V(\mathcal{L})$ or $V^{\mathcal{L}}(t)$, is the Laurent polynomial in $t^{1 / 2}$ with integer coefficients, defined by

$$
V^{\mathcal{L}}(t)=\left.(-A)^{-3 \phi(D)}\langle D\rangle\right|_{t^{1 / 2}=A^{-2}} \in \mathbb{Z}\left[t^{-1 / 2}, t^{1 / 2}\right]
$$

- Laurent polynomial over a field \mathbb{F} :

$$
p=\sum_{k \in \mathbb{Z}} p_{k} t^{k}, \quad p_{k} \in \mathbb{F}
$$

- Kauffman bracket maps a diagram D to $\langle D\rangle \in \mathbb{Z}\left[A^{-1}, A\right]$, characterised by
(1) $\langle O\rangle=1$
(3) $\langle D \sqcup \bigcirc\rangle=\left(-A^{-2}-A^{2}\right)\langle D\rangle$
(3) $\left\langle D_{+}\right\rangle=A\left\langle D_{0}\right\rangle+A^{-1}\left\langle D_{\infty}\right\rangle$

Jones polynomial, $V(\mathcal{L})$ or $V^{\mathcal{L}}(t)$, is a function,

$$
V:\{\text { oriented links in } \mathcal{M}\} \rightarrow \mathbb{Z}\left[t^{-1 / 2}, t^{1 / 2}\right],
$$

which is defined by the axioms:
(1) Invariance: $V(\mathcal{L})$ is invariant under ambient isotopy of \mathcal{L}, i.e. if \mathcal{L}_{1} and \mathcal{L}_{2} are ambient isotopic, then $V\left(\mathcal{L}_{1}\right)=V\left(\mathcal{L}_{2}\right)$.
(2) Normalisation: $V(\bigcirc)=1$.
(0) Skein relation: Whenever three oriented links $\mathcal{L}_{+}, \mathcal{L}_{-}, \mathcal{L}_{0}$ are the same except in the neighbourhood of a point where they differ as in the oriented Conway triple, then we have the skein relation,

$$
t^{-1} V\left(\mathcal{L}_{+}\right)-t V\left(\mathcal{L}_{-}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) V\left(\mathcal{L}_{0}\right)=0 .
$$

Example: 2 unknots

$$
\begin{aligned}
& \text { L_L } \\
& t^{-1} V\left(\mathcal{L}_{+}\right)-t V\left(\mathcal{L}_{-}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) V\left(\mathcal{L}_{0}\right)=0 \\
& V\left(\mathcal{L}_{+}\right)=1=V\left(\mathcal{L}_{-}\right) \\
& \Rightarrow V\left(\mathcal{L}_{0}\right)=-\left(t^{1 / 2}+t^{-1 / 2}\right)
\end{aligned}
$$

Example: Hopf link

$$
\begin{aligned}
& t^{-1} V\left(\mathcal{L}_{+}\right)-t V\left(\mathcal{L}_{-}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) V\left(\mathcal{L}_{0}\right)=0 \\
& t^{-1} V\left(\mathcal{L}_{+}\right)+t\left(t^{1 / 2}+t^{-1 / 2}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right)=0 \\
& \Rightarrow V\left(\mathcal{L}_{+}\right)=-t^{1 / 2}\left(1+t^{2}\right)
\end{aligned}
$$

More generally:
HOMFLY(PT) polynomial, $P(\mathcal{L})$ or $P^{\mathcal{L}}(q, \lambda)$, of an oriented link \mathcal{L} is defined by the following three axioms:
(1) Invariance: $P(\mathcal{L})$ is invariant under ambient isotopy of \mathcal{L}.
(3) Normalisation: $P(\bigcirc)=1$.
(3) Skein relation: $q^{-1} P\left(\mathcal{L}_{+}\right)-q P\left(\mathcal{L}_{-}\right)=\lambda P\left(\mathcal{L}_{0}\right)$.

Chern-Simons action

$$
\begin{aligned}
S & =\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) \\
& =\frac{k}{4 \pi} \int d^{3} x \epsilon^{\mu \nu \rho} \operatorname{Tr}\left(A_{\mu} \partial_{\nu} A_{\rho}+\frac{2}{3} A_{\mu} A_{\nu} A_{\rho}\right)
\end{aligned}
$$

- Compact, oriented three-manifold \mathcal{M} with a compact simple gauge group G
- Non-abelian \& topological invariant (no metric)
- k : level (inverse coupling constant) of the CS theory ($k \in \mathbb{Z}$ for compact, connected, simple gauge group G)
- Gauge theory: its classical configuration on \mathcal{M} with gauge group G is described by a principal G-bundle over \mathcal{M}
- $\frac{\delta S}{\delta A}=0 \Rightarrow F \equiv d A+A \wedge A=0 \Rightarrow$ flat G-bundle

Observable

- Holonomy - measure flat connection A ? Local observable made of F ?
- $\frac{\delta}{\delta g_{\mu \nu}}\left\langle\mathcal{O}_{i_{1}} \ldots \mathcal{O}_{i_{n}}\right\rangle=0$ for a set of operators $\mathcal{O}_{i_{1}}, \ldots, \mathcal{O}_{i_{n}}$
- Wilson loop around a non-contractible loop:

$$
W(A)=\operatorname{Tr} \operatorname{Hol}(A)=\operatorname{Tr} P \exp (\oint A)
$$

Wilson loop around a knot \mathcal{K} :

$$
W_{\mathcal{R}}^{\mathcal{K}}(A)=\operatorname{Tr}_{\mathcal{R}} \mathrm{P} \exp \left(\oint_{\mathcal{K}} A\right)=\operatorname{Tr}_{\mathcal{R}} \mathrm{P} \exp \left(\oint_{\mathcal{K}} A_{i} d x^{i}\right) \in G
$$

"Vortex Atoms", 1867

Lord Kelvin (William Thomson): atoms are knotted vortices in aether

Peter Tait: classification of knots up to 10 crossings

Wilson loop around a knot \mathcal{K} :

$$
W_{\mathcal{R}}^{\mathcal{K}}(A)=\operatorname{Tr}_{\mathcal{R}} P \exp \left(\oint_{\mathcal{K}} A\right)=\operatorname{Tr}_{\mathcal{R}} P \exp \left(\oint_{\mathcal{K}} A_{i} d x^{i}\right) \in G
$$

Partition function of a link \mathcal{L} :

$$
Z_{\mathcal{R}_{1} \ldots \mathcal{R}_{L}}(\mathcal{L})=\int \mathcal{D} A e^{i S}\left(\prod_{\alpha=1}^{L} W_{\mathcal{R}_{\alpha}}^{\mathcal{K}_{\alpha}}\right)
$$

Correlation function of a link \mathcal{L} :

$$
\begin{aligned}
& W_{\mathcal{R}_{1} \ldots \mathcal{R}_{L}}(\mathcal{L})=<W_{\mathcal{R}_{1}}^{\mathcal{K}_{1}} \ldots W_{\mathcal{R}_{L}}^{\mathcal{K}_{L}}>=\frac{1}{Z(\mathcal{M})} \int \mathcal{D} A e^{i S}\left(\prod_{\alpha=1}^{L} W_{\mathcal{R}_{\alpha}}^{\mathcal{K}_{\alpha}}\right) \\
& Z(\mathcal{M})=\int[\mathcal{D} A] e^{i S}
\end{aligned}
$$

Jones Polynomial from CS Theory

- $\mathcal{M}=S^{3}$ with a link \mathcal{L} embedded in it
- Wilson loop in the fundamental representation $(\mathcal{R}=\square)$ of $G=S U(2)$

Goal: find the skein relation of Jones polynomial for \mathcal{L},

$$
t^{-1} V\left(\mathcal{L}_{+}\right)-t V\left(\mathcal{L}_{-}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) V\left(\mathcal{L}_{0}\right)=0
$$

Step I: Surgery - cut the manifold

- draw a small sphere S^{2} about a crossing
- cutting the sphere, we perform a Heegaard splitting on \mathcal{M}
- simple piece \mathcal{M}_{R} (interior of S^{2}) \& complicated piece \mathcal{M}_{L} (exterior of S^{2} with complicated details)
- boundaries $\partial \mathcal{M}_{R}=\partial \mathcal{M}_{L}=\mathrm{S}^{2}$, of opposite orientations
- on $\partial \mathcal{M}_{R}: 4$ marked points indicating the intersections of \mathcal{L} with S^{2}, connected by two lines in the interior of the 3 -ball

Step II: Quantisation

- associate 2-dimensional physical Hilbert spaces \mathcal{H}_{R} and \mathcal{H}_{L} (canonically dual to each other) to $\partial \mathcal{M}_{R}$ and $\partial \mathcal{M}_{L}$
- path integrals on \mathcal{M}_{R} and \mathcal{M}_{L} give vectors ψ and χ in \mathcal{H}_{R} and \mathcal{H}_{L}
- before gluing back the manifolds, act on the boundary $\partial \mathcal{M}_{R}$ with a diffeomorphism $K, \psi \rightarrow K \psi$

Step III: Surgery - glue the manifold

- connected sum: $\mathcal{M}=\mathcal{M}_{L} \# \mathcal{M}_{R} / X_{1} / X_{2}$
- natural pairing: partition function $Z(\mathcal{L})=(\chi, K \psi)$
- in a 2 d vector space, any 3 vectors ψ, ψ_{1}, ψ_{2} in \mathcal{H}_{R} obey a linear dependence relation,

$$
\begin{aligned}
\alpha \psi+\beta \psi_{1}+\gamma \psi_{2} & =0 \\
\alpha Z(\mathcal{L})+\beta Z\left(\mathcal{L}_{1}\right)+\gamma Z\left(\mathcal{L}_{2}\right) & =0
\end{aligned}
$$

Step IV: Find the coefficients α, β \& γ

- half-monodromy $B: \psi_{1}=B \psi, \quad \psi_{2}=B^{2} \psi$ two points undergo a half-twist/diffeomorphism about one another
- matrix B acts in a 2-dimensional space \& obeys a characteristic equation

$$
B^{2}-\operatorname{tr}(B) B+\operatorname{det}(B)=0
$$

- $\operatorname{det}(B) \psi-\operatorname{tr}(B) \psi_{1}+\psi_{2}=0\left[\right.$ cf. $\left.\alpha Z(\mathcal{L})+\beta Z\left(\mathcal{L}_{1}\right)+\gamma Z\left(\mathcal{L}_{2}\right)=0\right]$
- $\alpha=\operatorname{det}(B), \quad \beta=-\operatorname{tr}(B), \quad \gamma=1$
[Moore \& Seiberg, Phy. Lett. B, 1988]
- $\alpha=\operatorname{det}(B), \quad \beta=-\operatorname{tr}(B), \quad \gamma=1$
- need only the eigenvalues of $B: \lambda_{i}= \pm \exp \left(i \pi\left(2 h_{\mathcal{R}}-h_{E_{i}}\right)\right)$ $h_{\mathcal{R}}$: conformal weight of the WZW primary field corresponding to \mathcal{R}

$$
h_{\mathcal{R}}=\frac{N^{2}-1}{2 N(k+N)} \quad N=2 \text { for } \operatorname{SU}(2)
$$

$E_{i}:$ irreps of $\operatorname{SU}(2), \mathcal{R} \otimes \mathcal{R}=E_{1} \oplus E_{2}$ $h_{E_{i}}$: weights of primary fields corresponding to $\mathcal{R} \otimes \mathcal{R}$

$$
\begin{aligned}
& h_{E_{1}}=\frac{N^{2}+N-2}{N(k+N)} \\
& h_{E_{2}}=\frac{N^{2}-N-2}{N(k+N)} \quad N=2 \text { for } \operatorname{SU}(2)
\end{aligned}
$$

- $\lambda_{1}=\exp \left(\frac{-i \pi}{2(k+2)}\right), \quad \lambda_{2}=-\exp \left(\frac{3 i \pi}{2(k+2)}\right)$
- $\alpha=-\exp \left(\frac{i \pi}{k+2}\right), \quad \beta=-\exp \left(\frac{-i \pi}{2(k+2)}\right)+\exp \left(\frac{3 i \pi}{2(k+2)}\right), \quad \gamma=1$

Step V: Fix the change of framing

- A twist is induced in the framing after the operation of half-monodromy B

- Dehn twist reverts the framed link to its original framing

- multiply with a factor $\exp \left(-2 \pi i h_{\mathcal{R}}\right)=\exp \left(\frac{-3 \pi i}{k+2}\right)$
- $\alpha=-\exp \left(\frac{\pi i}{k+2}\right), \quad \beta=-\exp \left(\frac{-2 \pi i}{k+2}\right)+1, \quad \gamma=\exp \left(\frac{-3 \pi i}{k+2}\right)$
- mult. with $\exp \left(\frac{\pi i}{k+2}\right)$, subs. $t=\exp \left(\frac{2 \pi i}{k+2}\right)$, replace $\mathcal{L}, \mathcal{L}_{1}, \mathcal{L}_{2}$ by $\mathcal{L}_{+}, \mathcal{L}_{0}, \mathcal{L}_{-}$

$$
-t Z\left(\mathcal{L}_{+}\right)+\left(t^{1 / 2}-t^{-1 / 2}\right) Z\left(\mathcal{L}_{0}\right)+t^{-1} Z\left(\mathcal{L}_{-}\right)=0
$$

- identification $V(\mathcal{L})=\frac{Z(\mathcal{L})}{Z(\text { unknotted Wilson loop })}$

$$
-t V\left(\mathcal{L}_{+}\right)+\left(t^{1 / 2}-t^{-1 / 2}\right) V\left(\mathcal{L}_{0}\right)+t^{-1} V\left(\mathcal{L}_{-}\right)=0
$$

- correlation function $W_{\square \ldots \square}(\mathcal{L})=Z\left(S^{3} ; \mathcal{L}\right) / Z\left(S^{3}\right)$

$$
W_{\square \ldots \square}(\mathcal{L})=t^{2 \operatorname{lk}(\mathcal{L})}\left(\frac{t-t^{-1}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}\right) V^{\mathcal{L}}(t)
$$

[Mariño, hep-th/0406005]

Example: Unknot

$$
\begin{aligned}
& \alpha O+\beta \bigcirc+\gamma O C=0 \\
& \alpha Z\left(S^{3} ; C\right)+\beta Z\left(S^{3} ; C^{2}\right)+\gamma Z\left(S^{3} ; C\right)=0
\end{aligned}
$$

$$
\frac{Z\left(S^{3} ; C_{1} \ldots C_{s}\right)}{Z\left(S^{3}\right)}=\prod_{k=1}^{s} \frac{Z\left(S^{3} ; C_{k}\right)}{Z\left(S^{3}\right)}
$$

$$
\begin{aligned}
& \frac{Z\left(\mathrm{~S}^{3} ; C\right)}{Z\left(\mathrm{~S}^{3}\right)}=-\frac{\alpha+\gamma}{\beta}=t^{1 / 2}+t^{-1 / 2}, \quad t=\exp \left(\frac{2 \pi i}{k+2}\right) \\
& \left(\text { cf. } W_{\square}(C)=t^{2 / k(C)}\left(\frac{t-t^{-1}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}\right) V^{C}(t), \quad l k(C)=0, V^{C}(t)=1\right)
\end{aligned}
$$

CS theory, $G=S U(2)$, fund. reps \longleftrightarrow Jones polynomial

$$
\begin{aligned}
& W_{\square \ldots \square}(\mathcal{L})=t^{2 \mid k(\mathcal{L})}\left(\frac{t-t^{-1}}{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}\right) V^{\mathcal{L}}(t), \\
& t=\exp \left(\frac{2 \pi i}{k+2}\right)
\end{aligned}
$$

CS theory, $G=S U(N)$, fund. reps \longleftrightarrow HOMFLY(PT) polynomial

$$
\begin{aligned}
& W_{\square \cdots \square}(\mathcal{L})=\lambda^{I k(\mathcal{L})}\left(\frac{\lambda^{\frac{1}{2}}-\lambda^{-\frac{1}{2}}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}\right) P^{\mathcal{L}}(q, \lambda), \\
& q=\exp \left(\frac{2 \pi i}{k+N}\right), \quad \lambda=q^{N}
\end{aligned}
$$

CS theory, $G=S O(N)$, fund. reps \longleftrightarrow Kauffman polynomial CS theory, $G=S U(2)$, higher dim. reps \longleftrightarrow Akutsu-Wadati polynomials

Partition function of S^{3}

Gluing two solid tori ($D \times \mathrm{S}^{1}$), a-cycle to a-cycle and b-cycle to b-cycle.

Gluing two solid tori after an S-transformation. We consider the solid blue ball $\cup\{\infty\}$ as S^{3}, in which there is a brown solid torus embedded.

S-matrix elements in the basis of integrable representations of the affine Lie algebra associated to $G=S U(2)$ at level k :

$$
\begin{aligned}
S_{a b} & =\sqrt{\frac{2}{k+2}} \sin \left(\frac{(a+1)(b+1) \pi}{k+2}\right) \\
Z\left(S^{2} \times S^{1}\right) & =\langle 0 \mid 0\rangle=1 \\
Z\left(S^{3}\right) & =\langle 0| S|0\rangle=S_{00}=\sqrt{\frac{2}{k+2}} \sin \left(\frac{\pi}{k+2}\right) \\
W_{\square}(\bigcirc) & =\frac{Z\left(S^{3} ; \bigcirc\right)}{Z\left(S^{3}\right)}=\frac{\langle 0| S|\mathcal{R}\rangle}{\langle 0| S|0\rangle}=\frac{S_{0 \mathcal{R}}}{S_{00}}=\frac{S_{01}}{S_{00}} \\
& =t^{1 / 2}+t^{-1 / 2}, \quad t=\exp \left(\frac{2 \pi i}{k+2}\right)
\end{aligned}
$$

Framing Dependence of Links and Manifolds

Links and manifolds are assumed to be framed

- Link: fix a trivialisation of its normal bundle in link \mathcal{L} (standard/blackboard framing of \mathcal{L})
- Manifold: fix a trivialisation of the tangent bundle (parallelisable manifold, admitting a global field of frames/linearly independent vector fields at each point)

