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Abstract: This article consists of an introduction to Calabi-Yau manifolds that are manifest
in Type I and heterotic superstring theories. The unbroken N = 1 supersymmetry conditions
are discussed to motivate the construction of Calabi-Yau three-folds. Properties of Kähler
and Calabi-Yau manifolds are also described, along with some concrete examples.
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1 Introduction

Since the 1970s, superstring theories have been good candidates for mathematically consistent
theories of quantum gravity. The theories are formulated in ten dimensions and reduce to ten-
dimensional supergravity theories at low energies. We would like to make sense of this as
realistic four-dimensional physics. In other words, we will compactify the ten-dimensional
theories on a six-dimensional space K, which can be determined uniquely via some extremely
restrictive requirements:

1. The geometry should be of the form M4 × K, with M4 being a maximally symmetric
spacetime.

2. There should be an unbroken N = 1 supersymmetry in four dimensions.

3. The gauge group and fermion spectrum should be realistic.

The Green-Schwarz mechanism [1], an anomaly cancellation procedure in d = 10 Type I and
heterotic SO(32) and E8 × E8 theories, satisfies precisely these requirements.

It is necessary that the vacuum state be of the form M4 × K which maintains four-
dimensional Poincaré invariance. As we will see,M4 is our favourite four-dimensional Minkowski
space and K is some compact six-dimensional manifold; all dimensions are on the same logi-
cal footing following Kaluza-Klein interpretation [2, 3]. Of course, physical fluctuations will
not necessarily respect the product form of the vacuum configuration, but understanding the
ground state is the key to understanding the low-energy excitations.

Superstrings can move only in geometries that satisfy the equations of motion of ten-
dimensional supergravity. If we further require the absence of matter, this means that the
metric needs to be Ricci flat so that it satisfies the vacuum Einstein’s equations. We shall
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look for the Ricci flat geometries in a certain class of complex manifolds, known as the Kähler
manifold. In the mathematics literature, Ricci flat Kähler manifolds have been dubbed Calabi-
Yau spaces, whose existence was conjectured by Calabi [4] and proved by Yau [5].

Section 2 will be devoted to the motivations behind the construction of Calabi-Yau man-
ifolds from the field theory viewpoint. These are in fact the unbroken N = 1 supersymmetry
conditions. These conditions will in turn require that for perturbatively accessible configu-
rations, K has SU(3) holonomy and that the four-dimensional cosmological constant vanish.
The properties of Kähler and Calabi-Yau manifolds K will be discussed in Sections 3 and 4.

We would like to mention two important results which will not be discussed in this paper.
First, on Calabi-Yau manifolds, the theory leads naturally to a d = 4 theory with E6 gauge
group and chiral fermion generations. Second, similar conclusions can be reached from a
stringy point of view. For references, readers may consult [6] and Chapters 14-16 in [7], on
which the contents of this paper are based.

2 Unbroken N = 1 Supersymmetry

The unbroken N = 1 supersymmetry in four dimensions interests us for several reasons.

Motivations

1. One striking motivation is to solve the gauge-hierarchy problem, which questions why
the mass scale of weak-interaction symmetry breaking is so tiny compared to more fun-
damental scales such as the Planck mass. In particular, to explain the existence of
massless charged spin zero fields (SU(2)× U(1) Higgs doublet), one needs to postulate
the existence of an unbroken supersymmetry of the low-energy world. Under this as-
sumption, massless charged scalars can naturally arise as supersymmetric partners of
massless charged fermions.

2. A state of unbroken supersymmetry in four dimensions always obeys the equations of
motion of the higher dimensional string and supergravity theories. This is most obvious
in global supersymmetry, where the Hamiltonian is positive semi-definite and vanishes
when and only when supersymmetry is unbroken.

3. The hypothesis of unbroken N = 1 supersymmetry in four dimensions is very restric-
tive, but not too restrictive, for phenomenology. In four-dimensional supersymmetric
theories with N > 2 supersymmetry, the massless fermions always transform in a real
representation of the gauge group, in stark contrast to what is observed in nature.

We will concentrate on the SO(32) and E8 × E8 theories because they have elementary
gauge fields and can generate chiral fermions in four dimensions. We note that many consid-
erations that we will develop could be carried out for the type II theories as well.
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Setup

1. We shall use the following conventions.

(a) Upper case Latin indices refer to the entire ten-dimensional spacetime, lower case
Latin indices refer to K, and Greek indices refer toM4.

(b) Components of tensors on K are denoted m,n, · · · in a real basis and i, j, k in a
complex basis.

(c) The spinor representation of SO(10) or SO(1, 9) is of dimension 25 = 32. The Dirac
matrices obey

{
ΓM ,ΓN

}
= 2gMN with signature (−,+,+, · · · ,+). We employ a

Majorana representation with ΓM being real, hermitian 32 × 32 matrices, apart
from Γ0 which is real and antihermitian. The ΓM may also be represented as tensor
products of the matrices γµ appropriate to Minkowski space, with the matrices γm

appropriate to the internal space:

Γµ = γµ ⊗ 1, Γm = γ5 ⊗ γm, (2.1)

with
γ5 =

i

4!
εµνρσγ

µνρσ. (2.2)

We also refer to the matrix

γ =
i

6!

√
gεmnpqrsγ

mnpqrs, (2.3)

which determines the chirality in the internal space. Thus γµ’s are real and hermi-
tian, apart from γ0 which is antihermitian, and γm’s are imaginary and hermitian
as are γ5 and γ.

2. In the low-energy effective field theories in ten dimensions,

(a) the d = 10, N = 1 supergravity multiplet contains a metric gMN , spin-3
2 gravitino

ψM , two-form BMN , spin-1
2 dilatino λ, and scalar field φ.

(b) the super Yang-Mills multiplet contains the Yang-Mills field strength F aMN and
spin-1

2 gluino χa.

3. We will require the background field configuration to be maximally symmetric onM4,
which requires the background values of the Fermi fields to vanish.

4. An unbroken supersymmetry is simply a conserved supercharge Q that annihilates the
vacuum state |Ω〉, which is equivalent to saying that for all operators U , 〈Ω| {Q,U} |Ω〉 =

0. This will certainly be so for a bosonic operator U , since then {Q,U} is fermionic.
On the other hand, when U is a fermionic operator, {Q,U} is simply δεU , the variation
of U under the unbroken supersymmetry transformation generated by ε. So finding an
unbroken supersymmetry at tree level means finding a supersymmetry transformation
such that δεU = 0 for every fermionic field U .
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In the field theory limit of string theory, under the assumption of maximal symmetry, the
relevant supersymmetry variations for the Fermi fields are

δψµ = ∇µε+

√
2

32
e2φ (γµγ5 ⊗H) ε, (2.4a)

δψm = ∇mε+

√
2

32
e2φ (γmH − 12Hm) ε, (2.4b)

δλ =
√

2 (γm∇mφ) ε+
1

8
e2φHε, (2.4c)

δχa = −1

4
eφF amnγ

mnε. (2.4d)

Here, φ is the dilaton field and Hpqr is the gauge-invariant field strength of the two-from Bpq
the antisymmetric tensor field strength (often called the torsion in the literature), with the
contractions

H = Hpqrγ
pqr, Hm = Hmqrγ

qr. (2.5)

The four transformation laws were derived for the ten-dimensional coupled supergravity-
super Yang-Mills field theory formulated by Chapline and Manton [8]. For the field strength
H to be Lorentz invariant under the Lorentz transformation δLB = tr (Θ dω̂) (ω̂ is the spin
connection; Θ is a matrix of infinitesimal parameters) in Green-Schwarz mechanism, it should
take the form

H = dB − ω3Y + ω3L, (2.6)

where ω3Y is the Yang-Mills Chern-Simon three-form,

ω3Y =
1

30
Tr

(
A ∧ F − 1

3
A ∧A ∧A

)
=

1

30
Tr

(
AdA+

2

3
A3

)
, (2.7)

and ω3L is the Lorentz Chern-Simon three-form,

ω3L =
1

30
Tr

(
ω̂dω̂ +

2

3
ω̂3

)
. (2.8)

Here Tr denotes a trace in the adjoint representation of either SO(32) or E8 × E8. Acting
with an exterior derivative on (2.6) gives the Bianchi identity for H,

dH = trR ∧R− trF ∧ F

= trR ∧R− 1

30
TrF ∧ F,

(2.9)

where we have a trace in the vector representation of SO(1, 9), trR ∧R = dω3L, and a trace
in the vector representation of SO(32), trF ∧ F = dω3Y .

Analysis

For some nonzero choice of ε, the vanishing of the supersymmetry variations δψµ, δψm, δλ
and δχa leads to some important restrictions on the Yang-Mills field strength F and the
geometry of both K andM4.
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1. Vanishing of δψµ

Taking the commutator of (2.4a), we find the integrability condition

[∇µ,∇ν ] ε− 1

(16)2
e4φ
(
γµν ⊗H2

)
ε = 0. (2.10)

Assuming thatM4 is a maximally symmetric space, we have the curvature tensor

Rµνρσ = κ (gµρgνσ − gµσgνρ) , (2.11)

with κ = R(4)

12 a parameter that is positive for de Sitter space, negative for anti-de Sitter
space, and zero for Minkowski space (R(4) being the four-dimensional Ricci scalar). Since

[∇µ,∇ν ] ε =
1

4
Rµνρσγ

ρσε =
1

2
κγµνε, (2.12)

we must have [
γµν ⊗

(
1

2
κ1− 1

(16)2
e4φH2

)]
ε = 0. (2.13)

For µ 6= ν, γµν is invertible so we find that ε is an eigenspinor of H2:

H2ε =
1

2
κ(16)2e−4φε. (2.14)

Note that H is an antihermitian matrix and thus κ ≤ 0.

2. Vanishing of δλ

This condition implies that[√
2 (γm∇mφ) +

1

8
e2φH

]2

ε = 0, (2.15)

which together with (2.14) gives

1

8

√
2e2φ {γm∇mφ,H} ε = −2 (∇mφ∇mφ+ κ) ε, (2.16)

hence ε is also an eigenspinor of {γm∇mφ,H}. Since H is antihermitian, we can have
only imaginary eigenvalues. It follows that the right-hand side of (2.16) must vanish:

∇mφ∇mφ = −κ, (2.17)

and so ∇mφ∇mφ must be a constant. However since φ depends only on the coordinates
of the internal manifold K, which is compact, φ must have a maximum somewhere. Thus
κ must vanish and φ must be a constant:

∇mφ = 0, κ = 0. (2.18)

ThereforeM4 is in fact flat! From (2.14) we also have

Hε = 0. (2.19)
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3. Vanishing of δψm

The variation (2.4b) now reduces to

∇̃mε ≡ ∇mε− βHmε = 0, β =
3

8

√
2e2φ, (2.20)

where ∇̃m is defined to be the covariant derivative with torsion −4βHpqr. The existence
of a spinor that satisfies (2.19) and (2.20) has important geometrical and topological
consequences which are associated with the fact that K is a complex manifold. To show
this, we will now derive a number of useful identities.

In virtue of (2.19) and (2.20), we have

γm∇mε = 0 (2.21)

and by operating with γn∇n, (
∇m∇m −

1

4
R

)
ε = 0. (2.22)

However if we take the divergence of (2.20) directly we find(
∇m∇m − βHm

;m − β2HmHm

)
ε = 0. (2.23)

Comparing with (2.22) and using the identity

HmH
m =

1

9
H2 − 4

3
HpqrH

pqr, (2.24)

we have (
βHm

;m −
1

4
R− 4

3
β2HpqrH

pqr

)
ε = 0. (2.25)

However Hm
;m is an antihermitian matrix and so we can have only imaginary eigenval-

ues. It follows that
Hm

;mε = 0,

R = −16

3
β2HpqrH

pqr.
(2.26)

Considering again (2.20), we take its commutator with ∇̃n, which yields the relation

R̃mnpqγ
pqε = 0, (2.27)

where R̃mnpq is the Riemann tensor constructed from the connection with torsion.

4. Vanishing of δχa

This condition implies that the field strength F must satisfy

Fmn
aγmnε = 0. (2.28)
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Remark. Under the decomposition SO(9, 1) → SO(3, 1) × SO(6) ' SO(3, 1) × SU(4), the
16 decomposes as

16 → (2,4)⊕ (2,4). (2.29)

This is the Majorana-Weyl 16 supersymmetry parameter (or a-number spinor) ε, which is real
and subject to the Weyl constraint: (γ5 ⊗ γ) ε = −ε. Such a spinor can be written as

ε(y) → εαβ(y) + ε∗αβ(y), y = (y1, · · · , y6) ∈ K, (2.30)

where the indices on εαβ transform respectively as (2,4). If there is any unbroken supersym-
metry, then by SO(3, 1) rotations we can generate further supersymmetries and so reach the
form

εαβ(y) = ξαηβ(y), (2.31)

with the ξα a set of four real, constant, linearly independent, a-number spinors (transform as
2⊕2) and the ηβ a set of four real c-number spinors (transform as 4⊕4). The reality of ξ and
η prevents them from being eigenspinors of γ5 ⊗ γ. Hence if there exists a spinor ε satisfying
our requirements, then there must exist on the internal space at least two real c-number spinors
η satisfying the same requirements. From now on, we will focus on the internal space spinor
η.

Vanishing H

Wemay simplify things by considering the caseHpqr = 0. We note that the right-hand side
of (2.9) scales differently from the left-hand side under dilations e−φr → λ(e−φr), where r is
the radius of curvature of K. Solutions with non-zero Hpqr will be of some fixed value of e−φr,
generically of order the ten-dimensional Planck length `p and higher derivative corrections to
the supersymmetry transformation laws (2.4) would be important. So such solutions would
not in general be reliable. By contrast, for zero Hpqr, the value of e−φr is not fixed. When
this scale is large compared to `p, field theory considerations are reliable.

In this case, from (2.20) and (2.31), one has a covariantly constant spinor:

∇mη = 0. (2.32)

This condition is very restrictive where it implies (2.27):

Rmnpqγ
pqη = 0, (2.33)

which upon contracting with γn gives

γnγpqRmnpqη = 0. (2.34)

Using the gamma matrix identity γnγpq = γnpq + gnpγq − gnqγp, and the curvature identity
Rmnpq +Rmqnp +Rmpqn = 0, (2.34) implies that

γpRmpη = 0. (2.35)
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Hence, the internal manifold K is shown to be Ricci-flat:

Rmn = 0. (2.36)

In terms of such η we may construct an almost complex structure:

Jm
n = −iη†γmnγη, (2.37)

which, by the Fierz rearrangement, satisfies

Jm
nJn

u = −δmu (J2 = −1). (2.38)

The metric is hermitian1 with respect to the almost complex structure J :

Jm
pJn

qgpq = gmn, (2.39)

An integrable2 almost complex structure is called a complex structure. A manifold K
endowed with a complex structure J is then called a complex manifold. A necessary and
sufficient condition for the almost complex structure J to be integrable, so that the manifold
can be a complex manifold, is the vanishing of a curvature-like tensor associated with the
almost complex structure, known as the Nijenhuis tensor:

Nmn
p = Jm

qJ[n
p

;q] − JnqJ[m
p

;q]. (2.40)

Indeed, with (2.20) and (2.37), we have

∇pJmn = −8βHsp[mJn]
s, (2.41)

from which it follows that Nmn
p is proportional to η† {H, γmnp} η and hence vanishes. Thus

K is a complex manifold with a hermitian metric. The condition (2.32) also implies that J
is covariantly constant. This leads to construction of the so-called Kähler manifold K (see
next section).

Furthermore, the vanishing of Hpqr requires that the difference of the Yang-Mills and
Lorentz Chern-Simons forms should be the exterior derivative of a two-form. This has as its
integrability condition that

1

30
TrF ∧ F = trR ∧R. (2.42)

This is the additional condition that the Yang-Mills field must also satisfy in addition to (2.28)
with our assumption that H = 0. These two conditions are very restrictive that they lead to
a four-dimensional phenomenological (realistic) model.

1In a given coordinate patch of a complex manifold the most general metric takes the form g = gijdz
i ⊗

dzj + gijdz̄
i⊗ dz̄j + gijdz̄

i⊗ dzj + gijdz
i⊗ dz̄j . A hermitian metric on a complex manifold is one for which

gij = 0 = gij , i.e. g = gijdz̄
i ⊗ dzj + gijdz

i ⊗ dz̄j . It provides us with a pairing between holomorphic and
antiholomorphic indices. When we lower or raise holomorphic indices they become antiholomorphic and vice
versa.

2At any point y in K, there is a suitable basis of complex coordinates zi and their complex conjugates
z̄j (i, j = 1, 2, 3), in which the almost complex structure J takes the form J ij = iδij , J

i
j = −iδij with other

components zero. We will call this the canonical form of J . If J can be expressed in the canonical form not
just at one point p ∈ K but in a whole open set containing p, then the complex coordinates may be called
the local holomorphic coordinates. If local holomorphic coordinates exist (in a neighborhood of each point p),
then J is said to be integrable.
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SU(3) Holonomy

We showed that K is Ricci-flat and Kähler when the field strength H vanishes. However,
a general compact manifold does not admit a Ricci-flat Kähler metric because of certain
topological obstructions. The nature of these obstructions can be most easily understood
in terms of the holonomy group. We will therefore reformulate our conditions on K in the
language of holonomy.

On any curved manifold, tangent vectors parallel-transported around closed loops un-
dergo rotations from their original orientations. The group of such rotations is called the
tangent-space group or the holonomy group, H. For a six-dimensional manifold K, the spin
connection ω̂ is a priori an SO(6) gauge field. Upon parallel transport around a closed loop
L, a physical field ψ is transformed into Uψ, where U = P exp

∫
L ω̂ · dx is the path-ordered

exponential of ω̂ around the loop L. These SO(6) matrices U always form the holonomy
group, H of the manifold K.

We would expect that the rotations would fill out the whole of SO(6) for a general six-
dimensional manifold. However, this is not so for a covariantly constant spinor field η, which
always returns to its original value upon parallel transport around a loop, viz. Uη = η. We
note that the Lie algebra of SO(6) is isomorphic to that of SU(4). The positive and negative
chirality spinor of SO(6) are the fundamental 4 and 4 of SU(4). Thus a covariantly constant
spinor may be thought of as a preferred orientation in this SU(4) which is not changed by
parallel transport.

We can always put η in the form η = (0, 0, 0, η0)T , and the unbroken SU(3) group is
simply the subgroup3 (little group) of SU(4) that acts on the first three components. The
existence of a covariantly constant η thus means that the spin connection ω̂ only takes values
in the little group of η, i.e. it is an SU(3) gauge field. In other words, this means that the
manifold has SU(3) holonomy. A manifold whose holonomy group is SU(3) has precisely two
covariantly constant spinors η and iγη since under SU(3) the 4⊕ 4 representation of SU(4)

decomposes as 4⊕ 4 = 3⊕ 3⊕ 1⊕ 1.

3 Kähler Manifolds

Let us consider a manifold whose holonomy is U(3) (the more restrictive case of SU(3) will be
discussed in the next section). Under U(3), the vector representation of SO(6) decomposes as
6 ∼= 3⊕ 3. In particular, in a system of local holomorphic coordinates zi, and their complex
conjugates z̄j (i, j = 1, 2, 3), a vector V m can be split into holomorphic components V i and
antiholomorphic components V j .

The distinction between holomorphic and antiholomorphic indices is invariant under holo-
morphic changes of coordinates and does not depend on the choice of a particular holomorphic

3This is analogous to the fact that in gauge theories, the group SU(4) can be broken down to SU(3) by
the expectation value of a Higgs 4.
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coordinate system. Hence, it is very natural to decompose tensor fields into pieces with def-
inite numbers of holomorphic and antiholomorphic indices. In particular, the metric tensor
gmn at a point p ∈ K is invariant under the action of U(3) on the tangent space at p. The
metric g obeys gij = gij = 0 since we can only make a U(3) singlet4 from 3⊗ 3. Also, being
symmetric, g obeys gij = gji. This implies that K is a complex manifold with a hermitian
metric.

Kähler Metric

In fact, U(3) holonomy further implies that K is a Kähler manifold, which is a complex
manifold that admits a special form of hermitian metric, known as the Kähler metric. A
general local expression for the Kähler metric is

gij = gji =
∂2Φ(z, z̄)

∂zi∂z̄j
, (3.1)

where Φ(z, z̄) is a (0,0) form or a scalar function, known as the Kähler potential. We shall
prove (more generally, for a manifold of U(N) holonomy) why we can write the Kähler metric
in the form (3.1).

Claim. Any metric can be put locally in the form of (3.1) (with gij = gij = 0) if and only if
it has U(N) holonomy.

Proof. On a manifold K of U(N) holonomy, we can define a tensor field

Jmn(y) = gmp(y)η†(y)γpnη(y). (3.2)

(This is just a redefinition of the almost complex structure (2.37) in terms of the metric.)
For each y ∈ K, Jmn can be viewed as a matrix acting on tangent vectors, the action being
V m → JmnV

n for any tangent vector V m. Jmn is in fact a matrix that assigns the value i
or −i to states in the vectors N or N of U(N). A U(N) holonomy thus means that Jmn is
covariantly constant, and the Nijenhuis tensor

Np
mn = Jqm(∂qJ

p
n − ∂nJpq)− Jqn(∂qJ

p
m − ∂mJpq) (3.3)

vanishes. Now define a (1, 1) form, called the Kähler form, kmn = −gmpJpn, and using the
explicit form of J in local holomorphic coordinates, J ij = iδij , J

i
j = −iδij , we find that

kij = kij = 0, kij = igij = −kji. (3.4)

By the symmetry of g, we can write the Kähler form5 as k = igijdz
i ∧ dz̄j . Since g and J are

covariantly constant, k is covariantly constant (or closed dk = 0); it obeys ∂k = ∂̄k = 0. It
4In general, it is impossible to make a U(N) singlet from N⊗N or N⊗N for N > 2.
5If the Kähler form is closed, dk = 0, then we have a Kähler manifold. Here, the exterior derivative d

can be written as d = ∂ + ∂̄, where ∂ and ∂̄ are respectively the holomorphic and anti-holomorphic exterior
derivatives, often called the Dolbeault operators.
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follows then that k can be expressed locally in terms of a scalar function Φ(z, z̄) as

k = i∂∂̄Φ(z, z̄). (3.5)

Bearing in mind the relation kij = igij , we see from (3.5) that the metric gij is of the form
(3.1).

To prove the converse, it is useful to first work out the form of the affine connection for
Kähler manifolds. One easily finds that the only nonzero components of the affine connection
Γpmn = 1

2g
pq(∂mgqn + ∂ngqm − ∂qgmn) are

Γijk = gil∂jgkl, Γijk = gil∂jgkl. (3.6)

It follows from this form of the affine connection that the standard complex structure J (with
nonzero components J ij = iδij , J

i
j = −iδij) is covariantly constant. Since the subgroup

of SO(2N) under which J is invariant is U(N), covariant constancy of J means that the
holonomy group of a Kähler manifold is (at most) U(N), completing the demonstration that
metrics of U(N) holonomy are precisely Kähler metrics.

Remark. The Kähler metric is not unique; it is always possible to modify the Kähler potential
Φ. If f is an arbitrary holomorphic function, then Φ̃ = Φ + f + f obeys ∂∂̄Φ̃ = ∂∂̄Φ.

To formalise things, let us define the Kähler manifold K.

Definition. A Kähler manifold K is a complex manifold with a Kähler metric, which satisfies
the following equivalent conditions:

1. The holonomy is in U(N) ⊂ SO(2N).

2. The Kähler form is closed, i.e. dk = (∂ + ∂̄)
(
igijdz

i ∧ dz̄j
)

= 0.

3. The metric is locally of the form gij = gji = ∂2Φ(z,z̄)

∂zi∂z̄j
with a Kähler potential Φ.

4 The Calabi-Yau Manifolds

A Kähler manifold K – which by our above remark – admits an infinity of Kähler metrics.
One may ask, is it possible to find a unique Kähler metric on K? In other words, can one find
on K a Kähler metric that has not U(N) holonomy but SU(N) holonomy? It is relatively
easy to see that there is a topological obstruction to finding such a metric.

Calabi-Yau Metric

In fact, the spin connection ω̂ of a Kähler manifold is a U(N) or SU(N) × U(1) gauge
field. The U(1) part of ω̂ is an abelian gauge field, which we may call Â. A metric on K of
SU(N) holonomy would be a Kähler metric such that Â is a pure gauge or, in other words,
such that the gauge-invariant field strength F̂ = dÂ vanishes. Such a metric exists only if Â is
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topologically trivial, which requires that the associated field strength F has zero flux through
any closed two-dimensional surface Σ in K, I(Σ) =

∫
Σ F̂ = 0.

Therefore, asking whether a Kähler manifold K admits a metric of SU(N) holonomy
amounts to asking whether it is possible to choose a Kähler potential so that the U(1) part of
the spin connection vanishes. In cohomology theory, the closed two form F̂ defines an element
of H2(K;R), the second de Rham cohomology group of K with real coefficients. This element6

is called the first Chern class of K, c1(K). A Kähler manifold such that I(Σ) = 0 for all Σ

is said to have vanishing first Chern class, c1(K) = 0.
In 1957, E. Calabi [4] conjectured that a Kähler manifold K of c1(K) = 0 always admits a

metric of SU(N) holonomy. He also proved that there would be up to scaling a unique metric
of SU(N) holonomy for any choice of complex structure on K and the cohomology class of the
Kähler form. Twenty years later, S.-T. Yau [5] proved the existence of this hypothetical metric
by establishing a global existence theorem for the solutions of the nonlinear partial differential
equations corresponding to Calabi’s conjecture.

By virtue of this rather difficult theorem, metrics of SU(N) holonomy correspond precisely
to Kähler manifolds of c1 = 0. This is a crucial simplification in our search for vacuum states
of unbroken N = 1 supersymmetry, since metrics of SU(N) holonomy are extremely difficult
to describe (none are known explicitly except in certain singular limits), but Kähler manifolds
of c1 = 0 can be found by qualitative methods, as we will see.

While it would hardly be possible to prove here the existence of metrics of SU(N) holon-
omy on Kahler manifolds of c1 = 0, we shall point out the following facts.

Claim. A metric of SU(N) holonomy is a Ricci-flat Kähler metric. (This is now called the
Calabi-Yau metric7.)

Short proof. From the discussion of SU(3) holonomy, it is true more generally that a manifold
of SU(N) holonomy admits a spinor field η that is covariantly constant, ∇mη = 0. Such a
spinor field necessarily obeys [∇m,∇n] η = 0 or Rmnpqγpqη = 0, which in turn implies that
Rmn = 0. Thus, a metric of SU(N) holonomy is necessarily Ricci-flat. Since SU(N) ⊂ U(N),
a metric of SU(N) holonomy is also Kähler.

There is in fact a (longer) proof which concerns the spin connection ω̂.

Long proof. We shall prove our claim by showing that, up to a factor, the Ricci tensor of a
Kähler manifold is the field strength F̂ of the U(1) part of ω̂, which we called Â. The em-
bedding of U(1) in SO(2N) means that the U(1) generator is precisely the complex structure
Jmn, whose nonzero components are J ij = iδij , J

i
j = −iδij .

6Strictly speaking, the closed two forms F̂ are Chern forms; the Chern classes ci are the cohomology classes
of the Chern forms. When E is the holomorphic line bundle T 1,0K, ci(E) is the Chern class of the manifold
K and it is commonly denoted as ci(K). In particular, the first Chern class c1(K) of K is that of the so-called
canonical line bundle of K.

7To date, there are no explicitly known Ricci-flat Kähler metrics on any nontrivial compact Calabi-Yau
manifolds (other than trivial cases of tori). This remains an important open problem.
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Figure 1: Under parallel transport of a vector V p around a small loop in the mn plane, it
changes by an amount δV p ∼ RmnpqV q.

Under parallel transport8 around a small loop in the mn plane (Fig. 1), vectors are
rotated by a matrix R(mn) whose pq matrix element is Rmnpq. The U(1) part9 of this matrix
is F̂mn = tr JR(mn) = RmnpqJ

pq. This is the U(1) part of the rotation undergone by tangent
vectors that are parallelly transported around a small loop in the mn plane; it is the field
strength F̂ of Â. The nonzero components of F̂mn are

F̂ij = −F̂ji = Rij
p
qJ

q
p = iRij

k
k − iRij

k
k, (4.1)

but
Rij

k
k = Rijlkg

lk = −Rijklg
kl = −Rij

l
l. (4.2)

Hence we have F̂ij = 2iRij
k
k. Comparing this to the Ricci tensor Rij = Ri

k
jk and the Kähler

identity Rikjk = −Rijkk, we get finally the relation between the Ricci tensor Rij and the U(1)

field strength F̂ij :
F̂ij = −2iRij = −F̂ji. (4.3)

It follows from (3.6) that the affine connection can be written as Γiji = ∂j ln det g. The
Riemann tensor is

Rijkl = ∂kΓ
i
jl

(4.4)

and the Ricci tensor is then

Rjk = Rijik = −∂kΓiji = −∂j∂k ln det g. (4.5)

The conditions that F̂ij = 0 and hence Rij = 0 are consequently that ln det g = f(zi) + f(z̄i),
where f(zi) is an arbitrary holomorphic function of zi. Locally, by a holomorphic change of

8On a general Riemannian manifold M of dimension 2N , the Riemann tensor Rmnpq is antisymmetric
in p and q. Fixing m and n, it can be viewed as a 2N × 2N antisymmetric matrix or in other words a
generator of SO(2N) which we may call R(mn), whose pq matrix element is Rmnpq. The well-known relation
[∇m,∇n]V p = Rmn

p
qV

q shows that in parallel transport around a small loop, tangent vectors undergo rotation
by the SO(2N) matrices R(mn). ForM of U(N) holonomy, the matrices R(mn) are U(N) matrices, embedded
in SO(2N). In our familiar complex basis, a U(N) generator U satisfies Uij = Uij = 0. Hence the matrix
R(mn) is a U(N) matrix when Rmnij = Rmnij = 0.

9Given an SO(2N) generator U , its U(1) part is tr JU = UmnJ
n
m.
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coordinates zi → z′i(zj), we can put f in an arbitrary form, say f = 1/2. The Ricci flat
condition is hence locally

ln det g = 1. (4.6)

Of course, g here must be a Kähler metric, described locally as gij = ∂i∂jΦ, with Kähler
potential Φ. So locally, in trying to find a Ricci-flat Kähler metric, we are trying to adjust Φ

to obey the condition (4.6).

Formally, we have the definition of a Calabi-Yau manifold.

Definition. A Calabi-Yau manifold (or a Calabi-Yau N -fold), K, is a compact Kähler mani-
fold, which satisfies the following equivalent conditions:

1. K has SU(N) holonomy.

2. K has vanishing first Chern class (c1 = 0).

3. K is Ricci flat.

In order for it to be valid in the noncompact case, additional boundary conditions at infinity
need to be imposed.

Examples of Calabi-Yau Manifolds

Yau’s theorem is very important, because on the one hand metrics with SU(3) holonomy
are very complicated (e.g. they can have no continuous symmetries) and none are known
explicitly. On the other hand, Kähler manifolds of c1 = 0 can be found by simple constructions.

The simplest Kähler manifolds10 that we can consider are CN and CPN , are not Calabi-
Yau – the first because it is not compact and the second because its Ricci tensor is not zero.
However, it turns out that some subspaces of CPN are. A simple example of a Kähler manifold
of c1 = 0 is a hypersurface of degree N + 1 in CPN . This is simply the set of zeros of some
selected k homogeneous polynomials P1, · · · , Pk of degrees d1, · · · , dk, viz. if

K =
{
z = (z1, · · · , zN+1) ∈ CPN | Pi(z) = 0 for i = 1, · · · , k

}
(4.7)

with the identification

Pi(λz1, · · · , λzN+1) = λ`iPi(z1, · · · , zN+1) and N + 1 =

k∑
i=1

`i, (4.8)

then K is a Calabi-Yau manifold. It is indeed a Kähler manifold since the metric induced from
CPN is Kähler.

10The complex projective space CPN is the complex space CN+1 with the origin removed, and and quotiented
out by the identification zi ∼ λzi for any nonzero complex number λ, i.e. all points along lines through the
origin are identified.
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The simplest example of a three-complex-dimensional Calabi-Yau manifold11 (Calabi-
Yau three-fold) from this family is obtained from N = 4 and k = 1, so that `i = 5. To be
specific, let us choose the following homogeneous polynomial of degree five12:

P =

5∑
α=1

z5
α. (4.9)

Its zeroes define a three-dimensional subset of CP4. The resulting Calabi-Yau manifold is
called a quintic hypersurface, which has a c1 = 0, and, by virtue of Yau’s proof of the
Calabi conjecture, admits a metric of SU(3) holonomy.

This construction can be easily generalised. Let us consider k homogeneous polynomials
of degree d1, · · · , dk in CPk+3. The subset defined by the simultaneous vanishing of all k
equations is a three-complex-dimensional Kähler manifold. To see which of these manifolds
admit metrics of SU(3) holonomy, we must compute the first Chern class c1, which can be
represented by a two-form (this is just F̂ of the U(1) part of ω̂ discussed above). In addition,
we can define the second and third Chern classes c2 and c3 – two topological invariants on
these manifolds – that can be represented by a four-form and six-form, respectively. Let
c = 1 + c1 + c2 + c3 denote the total Chern class13. Then for the complete intersection of k
polynomials discussed above, one can show that

c =
(1 + J)k+4

(1 + d1J) · · · (1 + dkJ)
= 1 +

(
k + 4−

k∑
i=1

di

)
J + · · · , (4.10)

where J is the two-form14 obtained by normalising the Kähler form of CPk+3 so that its
integral over any CP1 is unity and then projecting into the manifold defined by the vanishing
of the polynomials. The ith Chern class is then the term proportional to J i in the power
series expansion on the right-hand side. Hence c1 vanishes if and only if

k∑
i=1

di = k + 4. (4.11)

Since a linear subspace of CPN is just CPN−1, we are only interested in solutions to (4.11)
with all di ≥ 2. There are then just five possibilities, i.e. manifolds obtained by the vanishing
of

11We do not discuss manifolds such as K3 × T 2 and T 6, whose holonomy is a proper subgroup of SU(3)

since they cannot give rise to chiral fermions if the gauge field configuration is supersymmetric.
12We may consider more general quintic equations in CP4, such as

∑
α z

5
α + λz1z

4
2 + µz21z

3
2 + · · · = 0; the

resulting manifolds are all diffeomorphic although they have different complex structures induced from CP4.
13The total Chern class is defined as

c = det

(
I +

i

2π
F̂

)
= exp

[
tr

(
log

(
I +

i

2π
F̂

))]
= 1 + c1 + · · ·+ cn, cp = (

i

2π
)p det F̂ ,

As F̂ is a 2-form, cp is a 2p-form and vanishes for p > n.
14Powers of J denote wedge products, so that Jn = 0 for n > 3.
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1. a quintic equation in CP4,

2. a quartic and quadratic equation in CP5,

3. a pair of cubic equations in CP5,

4. a cubic and two quadratic equations in CP6, and

5. four quadratic equations in CP7.

The first condition above is for k = 1, that is precisely our earlier example of a quintic
hypersurface in CP4.

We may use the notation Y(N ; d1,··· ,dk) to denote the manifold obtained by the vanishing of
polynomials of degrees d1, · · · , dk in CPN . The five manifolds described above all have c1 = 0

and are all simply connected and hence have no harmonic vectors. They also have exactly
one harmonic two-form which is the Kähler form. Moreover, the second Stiefel-Whitney class
ω2 is the mod-2 reduction of c1, we have ω2 = 0, implying that spinors can be consistently
defined on these manifolds.

Remark (Spinors on six-manifolds of SU(3) holonomy). Corresponding to the decomposition
of tangent vector as a 3⊕3 of SU(3), the six gamma matrices γm,m = 1, · · · , 6 are naturally
split into creation and annihilation operators a∗i and aj, i, j = 1, · · · , 3, obeying{

a∗i, a∗j
}

= {ai, aj} = 0,
{
a∗i, aj

}
= δij . (4.12)

Taking both chiralities together, the spinor representation of SO(6) is eight-dimensional. It
consists of a Fock vacuum |Ω〉 (with ai |Ω〉 = 0), and the states

|Ωi〉 = a∗i |Ω〉 ,

|Ωi〉 =
1

2
εijka

∗ja∗k |Ω〉 ,

|Ω〉 =
1

6
εijka

∗ia∗ja∗k |Ω〉 .

(4.13)

Since gamma matrices reverse chirality, the states of one chirality are |Ω〉 and |Ωi〉 while |Ωi〉
and |Ω〉 have the opposite chirality. The covariantly constant spinors η are linear combinations
of the SU(3) singlets |Ω〉 and |Ω〉.

Remark (Topological condition of Yang-Mills fields). What are the choices of the Yang-Mills
gauge fields that permit the existence of an unbroken N = 1 supersymmetry? Recall that the
vanishing of δχa (2.28) gives

F amnγ
mnη = 0. (4.14)

By splitting the gamma matrices into creation and annihilation operators, we will have

F aij = 0 = F a
ij
, gijF a

ij
= 0. (4.15)
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Being trivial locally (rather like the equation for U(3) holonomy), F aij = 0 = F a
ij

have
essentially a topological impact – they assert that the gauge field is a holomorphic connection
on a holomorphic vector bundle E. On a manifold with local complex coordinates zi and z̄j,
the equations F aij = 0 = F a

ij
have the general solution:

Ai = V −1 ∂

∂zi
V, (4.16)

where V (z, z̄) is an arbitrary (not necessarily unitary) matrix valued function of z, z̄.
On the other hand, the equation gijF a

ij
= 0 is highly non-trivial, somewhat like the con-

dition for SU(3) as opposed to U(3) holonomy. Locally, it is a non-linear partial differential
equation for the unknown V . Uhlenbeck and Yau have proved [9] the global existence and
uniqueness of the solution of this equation, at least for gauge group SU(N), under a mild
assumption about E – it must be a stable bundle. Therefore, the solutions of (4.15) can be
classified topologically.

In addition to the quintic hypersurface, there is one other known example of a simply
connected Calabi-Yau three-fold that can be constructed with toric geometry; details can be
found in [6] Section 3. While several thousand inequivalent Calabi-Yau three-folds have been
obtained, the classification of Calabi-Yau three-folds is not yet complete to date [10]. More
general Calabi-Yau manifolds, including noncompact ones, can also be found by looking at
intersections of numerous constraints in higher dimensional projective and weighted projective
spaces, and products thereof.
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