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Abstract: We review an interesting model that is capable of supporting universal topological

quantum computation, known as the Fibonacci anyon model. Its capability can be shown by

considering the SU(2)3 Chern-Simons theory, which the Fibonacci theory is its even part. In

particular, we will sketch the proof that a quantum circuit computation can be efficiently approx-

imated by an intertwining action of a braid that corresponds to a unitary operation arbitrarily

close to any desired operation.
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Nature isn’t classical . . . and if you want to make a simulation of Nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.

—Richard Feynman, 1981. Simulating Physics with Computers.

1 Introduction

A topological quantum computer is constructed using a system in a non-abelian topological

phase. The computation is performed by creating quasiparticles, braiding them, and measuring

their final state. One interesting quasiparticle model is the Fibonacci anyon model, which is

known for its simplicity and its close relationship with the Z3 parafermion theory – a theory that

actually describes the observed quantum Hall state at filling factor ν = 12/5 [1, 2]. A given braid

can be shown to perform the same quantum computation in either theory (up to an irrelevant

overall abelian phase) [3]. Therefore, the Fibonacci theory and the associated braiding may be

physically relevant for fractional quantum Hall topological quantum computation in high-mobility

2D semiconductor structures.
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2 Fibonacci Anyons

The Fibonacci anyon model, or known in some literature as the “Golden theory”, is one

of the simplest models of non-abelian statistics [3–6]. In this model, there are only two fields

– the identity, 1, and a single nontrivial field usually called τ which represents the non-abelian

quasiparticle. (Note there is no field representing the underlying electron in this simplified theory).

This model has only a single nontrivial fusion rule:

τ × τ = 1 + τ, (0.1)

which makes it particularly simple1 in that any cluster of quasiparticles can fuse only to 1 or τ .

This results in the Bratteli diagram (Fig. 1).

Figure 1. Bratteli diagram for Fibonacci anyons.

Bratteli diagram. Bratteli diagram is a useful technique for counting conformal blocks. In

Fig. 1 we give the Bratteli diagram for the fusion of multiple τ fields. Starting with 1 at the

lower left, at each step moving from the left to the right, we fuse with one more τ field. At the

first step, the arrow points from 1 to τ since 1×τ = τ . At the next step τ fuses with τ to produce

either τ or 1 and so forth. Each conformal block is associated with a path through the diagram.

Thus to determine the number of blocks in 〈ττττ〉 we count the number of paths of four steps in

the diagram starting at the lower left and ending at 1.

SO(3)2 theory. We may construct Fibonacci anyons as the j = 0 and j = 1 quasiparticles in

SU(2)3 satisfying the fusion rules of Fibonacci anyons; here we simply omit the j = 1/2 and

j = 3/2 quasiparticles from SU(2)3. This is perfectly consistent since half-integral j will never

arise from the fusions of integral j’s. This model with only integer spins can be called SO(3)2

or, sometimes, ‘the even part of SU(2)3’. As a result of the connection to SU(2)3, sometimes 1

is called q-spin “0” and τ is called q-spin “1” [3].

Why Fibonacci? The dimension of the Hilbert space with n quasiparticles, viz. the number

of paths through the Bratteli diagram terminating at 1, is given by the Fibonacci number2

Fib(n− 1), hence the name Fibonacci anyons. Similarly the number terminating at τ is Fib(n).

1The Fibonacci anyon model is comparatively simpler than the Ising TQFT and its close relative, SU(2)2,

which have two fusion channels for a pair of σ quasiparticles, σ×σ ∼ 1+ψ, used for storing quantum information.
2The (n − 1)-th Fibonacci number, denoted as Fib(n − 1), is defined by Fib(1) = Fib(2) = 1 and Fib(n) =

Fib(n− 1) + Fib(n− 2) for n > 2.
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Therefore, the quantum dimension of the τ particle is the golden mean, dτ = φ ≡ (1 +
√

5)/2,

hence the alternative name “golden” theory.

Fibonacci anyons and qubits. The Fibonacci model is the simplest known non-abelian model

that is capable of universal quantum computation [5], which will be discussed in the next section.

This model has some interesting properties, i.e. its Hilbert space can be understood via fusion

rules and a basis changing F -matrix, and braiding of two particles can be understood as a rotation

R operator that produces a phase dependent on the quantum number of the two particles. One

can thus always encode qubits in the quantum number of some group of particles. It is therefore

instructive to study these properties in detail. Many of the principles that are described in the

following subsections can be generalised to other non-abelian models.

2.1 Fusing Fibonacci Anyons

The detailed structure of the Hilbert space is one of the important features of non-abelian systems.

A given state in the space can be described by a “fusion path” or “fusion tree”.

Fusion tree diagram. The space spanned by the conformal blocks resulting from the fusion of

fields is independent of the order of fusion (which field is fused with which field first). However,

fusing fields together in different orders results in a different basis for that space. A convenient

way to denote fusion of fields in a particular order is using fusion tree diagrams as follows.

Figure 2. A fusion tree diagram depicts the basis states obtained by fusing fields together on different

orders of fusion (although the space spanned by these states is independent of the order). The F -matrix

converts between the possible bases.

Both diagrams in Fig. 2 show the fusion of three initial fields φi, φj , φk. One could fuse

together φj and φk to form φp which then fused with φi to form φm, as shown on the left of

Fig. 2. The diagram on the right depicts an equally well choice of fusing φi and φj together first

before fusing the result with φk. The mathematical relation between these two bases is given

in the equation shown in Fig. 2 in terms of the so-called F -matrix (for “fusion”), which is an

important property of any given CFT or TQFT.

Two τ particles. By the fusion rule (0.1), or examining the Bratteli diagram, two τ particles

may fuse into two possible orthogonal degenerate states – one in which they fuse to form 1 and
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the other in which they fuse to form τ . A convenient notation [4] for these two states is |(•, •)1〉
and |(•, •)τ 〉, with each • representing a particle.

Three τ particles. When a third is added to two particles already in the 1 state, |(•, •)1〉, it

must fuse to form τ , which we will denote as |((•, •)1, •)τ 〉 ≡ |0〉. If the third is added to two

in the τ state, it may fuse to form either τ or 1, giving the two states |((•, •)τ , •)τ 〉 ≡ |1〉 and

|((•, •)τ , •)1〉 ≡ |N〉. Therefore we have a three dimensional Hilbert space for three particles,

shown using several notations in Fig. 3.

Figure 3. The three Fibonacci particles represent a qubit; the three possible states are labelled (far left) as

the logical |0〉, |1〉 and noncomputational |N〉 of the qubit. Here, the “quantum number” of an individual

particle is τ . Other common notations are the parenthesis (left) and ellipse (middle) notations, where each

black dot is a particle, and each pair of parenthesis or ellipse around a group of particles is labelled at the

lower right with the total quantum number associated with the fusion of that group. Analogously in the

fusion tree notation (right), particles are described by the branching of the tree, and each line is labelled

with the quantum number corresponding to the fusion of all the particles in the branches above it. For

instance, on the top line the two particles on the left fuse to form 1 which then fuses with the remaining

particle on the right to form τ .

An opposite order. Instead of fusing the particles from left to right as in Fig. 3, it is possible

to fuse the two particles on the right first, and then fuse with the particle furthest on the left last.

The three resulting states in this opposite order can be denoted as |(•, (•, •)1)τ 〉, |(•, (•, •)τ )τ 〉,
and |(•, (•, •)τ )1〉. As mentioned previously, different fusion orders results in a different basis set

for that space (although the space of states that is spanned by fusion of non-abelian particles is

independent of the fusion order). The change of basis is encoded in the F -matrix,

|(•, (•, •)i)k〉 =
∑
j

(F τττk )ij |((•, •)j , •)k〉 , (0.2)

where i, j, k take the values of the fields 1 or τ .

1. State |N〉. We have |(•, (•, •)τ )1〉 = |((•, •)τ , •)1〉 since in either fusion order there is only

a single state that has total topological charge 1 (the overall quantum number of a group

of particles is independent of the basis). Clearly, (F τττ1 ) is trivially unity.
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2. States |0〉 and |1〉. These two states of the three-particle space, however, transform

nontrivially under change of fusion order, where the two-by-two matrix (F ττττ ) is

(F ττττ ) =

F11 F1τ

Fτ1 Fττ

 =

 φ−1
√
φ−1√

φ−1 −φ−1

 . (2.1)

Four τ particles. For the Fibonacci theory [6], there is a consistency condition, known as the

pentagon identity [7–10], which makes the calculation of the F -matrix easy. This condition

simply says that one should be able to make changes of basis for four particles in several possible

ways and get the same result in the end. As an example, we have

|(•, (•, (•, •)1)τ )1〉 = |((•, •)1, (•, •)1)1〉
= |(((•, •)1, •)τ , •)1〉

(2.2)

where both equalities can be deduced from the fusion rules alone. In the first equality, the

rightmost two particles on both sides are in a state 1. Given that on the left-hand side, the overall

quantum number is 1, then on the right-hand side, when we fuse the leftmost two particles they

must fuse to 1 such that the overall quantum number remains 1. For the second equality, we

may express it in terms of the F -matrix (0.2) as

|(•, (•, (•, •)1)τ )1〉 = F11 |(•, ((•, •)1, •)τ )1〉+ F1τ |(•, ((•, •)τ , •)τ )1〉
= F11 |((•, (•, •)1)τ , •)1〉+ F1τ |((•, (•, •)τ )τ , •)1〉

=
∑
j

(F11F1j + F1τFτj) |(((•, •)j , •)τ , •)1〉
(2.3)

Comparing to the second equality in (2.2) yields F1τ (F11 + Fττ ) = 0 and F11F11 + F1τFτ1 = 1.

This, and other similar consistency identities, along with the requirement that F be unitary,

completely fix the Fibonacci F -matrix to be precisely that given in Eq. (2.1) (up to a gauge

freedom in the definition of the phase of the basis states).

2.2 Braiding Fibonacci Anyons

For non-abelian anyon systems, adiabatically braiding anyons around each other results in a

unitary operation (i.e. nontrivial rotation) on a degenerate many-anyon Hilbert space. As the

anyons are braided (wound) around each other, they pick up some topological phase due to the

Aharonov-Bohm effect3. Here we attempt to determine which unitary operation results from

which braid.
3We can think of anyons as being composite particles consisting of a flux Φ and a ring of charge q. When a

particle circulates another particle, its charge q goes around the flux Φ, thus acquiring a phase factor U = eiqΦ

due to the Aharonov-Bohm effect. The statistical angle of these anyons is then ϕ = qΦ/2. Non-abelian charges

and fluxes can generate unitary matrices instead of phase factors. In this case a circulation of one anyon around

another can lead to a final state in superposition. The anyons that have such statistics are called non-abelian,

while anyons that obtain a simple phase factor are called abelian.
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Two τ particles, again. Let us consider what happens to two Fibonacci particles when they

are braided around each other. The fields 1 and τ have conformal dimensions4 ∆1 = 0 and

∆τ = 2/5, respectively. One can use the operator product expansion (OPE) of two arbitrary

fields φi and φj ,

lim
z→w

φi(z)φj(w) =
∑
k

Ckij (z − w)∆k−∆i−∆jφk(w), (2.4)

to determine the phase accumulated when two particles wrap around each other. This will result

in two possibilities. On the one hand, taking two τ fields around each other clockwise results in

1 with a phase −8π/5 = 2π(−2∆τ ). On the other hand, the same operation may result in τ with

a phase −4π/5 = 2π(−∆τ ).

Once the phase accumulated for a full wrapping of two particles is known, the clockwise

exchange of two particles (half of a full wrapping) gives a phase of ±4π/5 if the fields fuse to

1 or ±2π/5 if the fields fuse to τ . To determine these signs, we will invoke another consistency

condition, known as the hexagon identity5 [7, 9, 10], which in essence assure that the rotation

operations are consistent with the F -matrix, viz. we can rotate before or after changing bases

and we get the same result. We can then determine that the R-matrix (for “rotation”) is given

by
R |(•, •)1〉 = e−4πi/5 |(•, •)1〉 ,

R |(•, •)τ 〉 = −e−2πi/5 |(•, •)τ 〉 ,
(2.5)

i.e. R1
ττ = e−4πi/5 and Rτττ = −e−2πi/5. In general, with the R-matrix and F -matrix, one

can determine the unitary operation that results from performing any braid on any number of

particles. This leads naturally to the notion of a braid group.

Definition. The braid group on n particles (can be thought of as n strands) has the well-known

presentation:

Bn =

σ1, · · · , σn−1

∣∣∣∣∣∣∣
σiσj = σjσi, |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 1

 , (2.6)

where the braid group generators σi are the half right twists of the i-th strand about the (i+1)-th

strand.

Remark. A Fibonacci theory with the opposite chirality (an “antiholomorphic theory”) also ex-

ists, in which case one accumulates the opposite phase. A nonchiral (or “achiral”) theory can

also exist; it is a combination of two chiral Fibonacci theories with opposite chiralities.

Three τ particles, again. In Fig. 4, the braid group is generated by σ1 and σ2. As mentioned

above, the Hilbert space of three particles is three dimensional as shown in Fig. 3. The unitary

4It is known [7] that the topological spin Θτ of a Fibonacci field τ is Θτ ≡ e2πi∆τ = e4πi/5.
5One can prove that ∆τ = 2/5 by using the hexagon identity and pentagon identity.
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Figure 4. Top: The two elementary braid operations σ1 and σ2 on three particles. Bottom: Using these

two braid operations and their inverses, an arbitrary braid on three strands can be built. The braid shown

here is written as σ2σ1σ1σ
−1
2 σ−1

2 σ1.

operation corresponding to the braid σ1 is determined from (2.5) to be
|0〉

|1〉

|N〉

 →

e−4πi/5 0 0

0 −e−2πi/5 0

0 0 −e−2πi/5


︸ ︷︷ ︸

ρ(σ1)


|0〉

|1〉

|N〉

 .
(2.7)

Evaluating the effect of σ2 is less trivial. We can perform the operation ρ(σ2) = F−1RF , viz.

we first make a basis change using F in order to determine how the two rightmost particles fuse,

then rotates these two rightmost particles using R, and finally undo the basis change. Explicitly,

let us consider what happens to the state |0〉. We first use (0.2) to write

|0〉 = F11 |(•, (•, •)1)τ 〉+ Fτ1 |(•, (•, •)τ )τ 〉 . (2.8)

Rotating the two right particles then gives

R |0〉 = e−4πi/5F11 |(•, (•, •)1)τ 〉 − e−2πi/5Fτ1 |(•, (•, •)τ )τ 〉 . (2.9)

and then we transform back to the original basis using the inverse of (0.2) to yield

ρ(σ2) |0〉 = ([F−1]11e
−4πi/5F11 − [F−1]1τe

−2πi/5Fτ1) |0〉

+ ([F−1]τ1e
−4πi/5F11 − [F−1]ττe

−2πi/5Fτ1 |1〉

= −e−πi/5/φ |0〉 − ie−iπ/10/
√
φ |1〉 .

(2.10)
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Similar results can be derived for the other two basis states to give the matrix

ρ(σ2) =


−e−πi/5/φ −ie−iπ/10/

√
φ 0

−ie−iπ/10/
√
φ −1/φ 0

0 0 −e−2πi/5

 . (2.11)

The braid operations σ1 and σ2 as well as their inverses generate all possible braids on three

strands. We can thus use Eqs. (2.7) and (2.11) to determine the unitary operation resulting

from any braid on three strands, with the unitary operations being built up from the elementary

matrices ρ(σ1) and ρ(σ2) in the same way that the complicated braids are built from the braid

generators σ1 and σ2. In particular, the braid σ2σ1σ1σ
−1
2 σ−1

2 σ1 shown in Fig. 4 corresponds6 to

the unitary matrix ρ(σ1)ρ(σ−1
2 )ρ(σ−1

2 )ρ(σ1)ρ(σ1)ρ(σ2).

2.3 Computing with Fibonacci Anyons

Having stated the properties of Fibonacci anyons, we would like to show how to do quantum

computation using these anyons, viz. how to construct our qubits.

Single qubit. As suggested by Freedman et al. [5], we shall use three (quasi)particles to

represent a qubit (many other schemes7 for encoding qubits are also possible). We represent the

two states of the qubit as |0〉 and |1〉 states, as shown in Fig. 3, with an additional state |N〉
being a “noncomputational” state. We arrange in such a way that the overall quantum number

of the three particles must remain unchanged under any amount of braiding. In other words,

at the beginning and end of our computations, there will be no amplitude in this state. Any

amplitude that ends up in this state is known as “leakage error”. Note that the braiding

matrices ρ(σ1) and ρ(σ2) are block diagonal and thus never mix the noncomputational state |N〉
with the computational space |0〉 and |1〉. Therefore, braiding the three particles gives us a way

to do single qubit operations with no leakage.

Multiple qubits. Let us now turn to multiple qubits, each encoded with three particles. To

perform universal quantum computation, in addition to being able to perform single qubit op-

erations, we must also be able to perform two-qubit entangling gates [11, 12]. Such two-qubit

gates will necessarily involve braiding together (physically “entangling”!) the particles from two

different qubits. The result of Freedman et al. [5] generally guarantees that these braids exist

corresponding to any desired unitary operation on a two-qubit Hilbert space. This is equivalent

to saying that the braids have dense images.

6The order is reversed since the operations that occur at earlier times are written to the left in conventional

braid notation, but on the right when multiplying matrices together.
7A naive choice might be to use two particles for a qubit and declare the two states |(•, •)1〉 and |(•, •)τ 〉 to

be the two orthogonal states of the qubit. However, one can never change |(•, •)1〉 to |(•, •)τ 〉 by a single qubit

operation, viz. braiding (rotating) once the two particles around each other. In other words, it is not possible to

change the overall quantum number of a group of particles by braiding within that group.
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Dense image. A quantum state is said to be able to support universal quantum computation

as long as the set of braids has a “dense image” in the set of unitary operations. (In other

words, the braid group representations should have dense images in the unitary group.) This

means that there exists a braid that corresponds to a unitary operation arbitrarily close to any

desired operation. The closer one wants to approximate the desired unitary operation, the longer

the braid typically needs to be, although only logarithmically so (i.e, the necessary braid length

grows only as the log of the allowed error distance to the target operation). We shall sketch a

proof of this result in the next section.

In such a theory that allows universal quantum computation, one always needs to encode a

qubit with at least three particles so that one is able to do single qubit operations by braiding

particles within a qubit. To perform two-qubit operations one needs to braid particles constituting

one qubit with the particles constituting another qubit. In general, it is always the case that one

can achieve a unitary operation by braiding n particles around each other with an arbitrary braid,

or by moving (weaving) a single particle around n− 1 others that remain stationary [13].

Practical construction of braids. The problem of actually finding the braids for a qubit

that correspond to desired unitary operations, while apparently complicated, turns out to be

straightforward [3, 4]. With the iterative algorithm proposed by Solovay and Kitaev [12], one

can put together many short braids to efficiently construct a long braid arbitrarily close to any

desired target unitary operation. Such a braid is polylogarithmically long in the allowed error

distance to the desired operation and hence the search is only algebraically hard in the length of

the braid.

Further, finding braids for multi-qubit is a much more formidable task. The full Hilbert space

for six Fibonacci particles (constituting two qubits) is now 13 dimensional, and searching for a

desired result in such a high dimensional space is extremely hard even for a powerful classical

computer. Therefore, the problem needs to be tackled by divide-and-conquer approaches, building

up two-qubit gates out of simple braids on three particles [3, 4]; a detailed discussion can be found

in [14] Section IV.B.c.

3 Universal Topological Quantum Computation

We claimed that Fibonacci anyons were capable of supporting universal topological quantum

computation. In this section, we sketch a proof of this claim within the context of a more general

question: which topological states are universal for quantum computation or, in starker terms, for

which topological states is the entire gate set required to efficiently simulate an arbitrary quantum

circuit to arbitrary accuracy.

A general braid is composed of copies of a single operation (Figure 5) and its inverse. For

Fibonacci anyons, “positive braids” will prove to be sufficient, where there is no necessity to ever

use the inverse operation. In this section, we shall see why.
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Figure 5. A single operation of braiding in a state supporting universal quantum computation.

3.1 Braid Group Representations

We shall assume a single species of quasiparticle, σ (a general case of Fibonacci anyon τ). When

there are n σ’s at fixed positions z1, · · · , zn, there is an exponentially large (∼ (dσ)n-dimensional)

ground state subspace Vn of Hilbert space. For quantum computation with anyons, the qubits

must be located in the “Fibonacci” state space, since a general Vn has no natural tensor factoring

(it can have prime dimension), where some directions in Vn are discarded from the computational

space and so one must always guard against unintended “leakage” into the discarded directions.

Braiding the σ’s produces a representation ρn,

ρn : Bn → U(Vn) (2.1)

from the braid group Bn on n strands into the unitary transformations of Vn. Here, since only

the projective reduction in the projective group8 PU(Vn) has physical significance, we do not

care about the overall phase of the wavefunction.

We would like to be able to enact an arbitrary unitary transformation such that up to phase,

ρn(Bn) is dense in PU(Vn), i.e. the intersection of all closed sets containing ρn(Bn) should

simply be PU(Vn). In other words, an arbitrary unitary transformation can be approximated, up

to a phase, by a transformation in ρn(Bn) to within any desired accuracy. This is the condition

which our topological phase must satisfy.

For a modestly large number (≥ 7) of σ’s, it was shown [5, 15] that the braid group represen-

tations associated with SU(2)k Chern-Simons theory at level k 6= 1, 2, 4 are dense in SU(Vn, k),

and hence in PU(Vn, k). This type of representation is known as the Jones representation9

or Jones-Witten representation. This representation satisfies a key “two eigenvalue prop-

erty” (TEVP), defined as follows.

Definition. Let G be a compact Lie group and ϕ a faithful, irreducible, unitary representation.

The pair (G,ϕ) has TEVP if there exists a conjugacy class [g] of G such that:

1. [g] generates a dense set in G.

8PU(Vn) is a set of unitary transformations on Vn with two transformations identified if they differ only by a

phase.
9Formally, the Jones representation of the braid groups is defined as ρ(σi) = q−(1+q)ei, where q = e

2πi
r , r ≥ 3

and ei is the basis of projectors that generate, with the identity 1, the Temperley-Lieb-Jones algebras.
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2. For any g ∈ [g], g acts on ϕ with exactly two distinct eigenvalues whose ratio is not ±1.

The TEVP simply means that the image matrix of each braid generator σi under the Jones

representation has exactly two distinct eigenvalues whose ratio is not ±1. A salient feature of

the Jones representation is that it splits as a direct sum of irreducible representations indexed by

some 2-row Young diagrams, which we will refer to as sectors.

Definition. A Young diagram λ = [λ1, · · · , λs], λ1 ≥ λ2 ≥ · · · ≥ λs is called a (2, r) diagram if

s ≤ 2 (at most two rows) and λ1 − λ2 ≤ r − 2. An irreducible representation corresponding to a

(2, r) diagram λ = [λ1, λ2] is known as a sector, denoted by ρ[λ1,λ2].

3.2 Topological Modular Functor

The Jones representation of a braid group is, in fact, equivalent to the representation of the

SU(2)k (Witten-)Chern-Simons modular functor at an r-th root of unity, q = e
2πi
r , which is

used to build a universal quantum computer. The equivalence of these two representations was

established in [5, 16].

Definition. A modular functor assigns to a compact surface Σ a complex vector space V (Σ)

and to a diffeomorphism of the surface (preserving structures) a linear map of V (Σ).

Here we consider V (Σ) that always has a positive definite hermitian inner product 〈 , 〉h and the

induced linear maps that are unitary (preserve 〈 , 〉h). There are usually additional structures to a

modular functor [17, 18], but these can be dropped when we consider quantum-SU(2)k-invariants

of braiding.

An SU(2)k Chern-Simons modular functor is a topological modular functor (TMF)10,

which gives a family of representations of the braid group and mappling class groups. Here we will

consider the SU(2)3 Chern-Simons modular functor of braids at the fifth root of unity q = e
2πi
5

(level k = 3), which can be used to build the so-called “Chern-Simons5” (CS5) model which

efficiently and fault tolerantly simulates the computations of an exact quantum circuit model.

The details can be found in [5].

3.3 Projectively Dense Jones Representations

We shall sketch a proof of our claim, known as the density theorem11 in [5], which states that the

closed image of some Jones representation ρn is densely generated by elements σi satisfying the

TEVP. Here we will be content with doing the simplest nontrivial case: six Fibonacci anyons τ

with total charge 1 and ground state subspace V6
∼= C5 ∼= 2 qubits⊕ non-computational C.

10The TMF is the strictly 2-dimensional part of a topological quantum field theory (TQFT).
11A more general theorem for cases r ≥ 5, r 6= 6, 10, n ≥ 3 or r = 10, n ≥ 5 [15] leads to the result that the

SU(2)k Chern-Simons modular functor at an r-th root of unity is universal for quantum computation if r 6= 3, 4, 6.
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Theorem (Density theorem). Let ρ := ρ[3,3] ⊕ ρ[4,2] : B6 → U(5)× U(8) be the Jones represen-

tation of the braid group B6 at the 5-th root of unity q = e
2πi
5 . Then the closure of the image of

ρ(B6) in U(5)× U(8) contains SU(5)× SU(8).

By the equivalence theorem [5, 16], this is the same representation ρ : B6 → U(5)×U(8) in

the SU(2)3 Chern-Simons modular functor at the 5-th root of unity. The proofs of the density

for ρ[3,3] and ρ[4,2] are similar. One may prove both cases at the same time and give separate

argument for the more complicated case ρ[4,2] when necessary.

Let H be the closure of the image, image(ρ), of ρ[3,3] (or ρ[4,2]) in U(5) (or U(8)) which we will

try to identify. By Theorem 3.1 in [5], H is a compact subgroup of U(m) (m = 5 or 8) of positive

dimension. Denote by ϕ the induced m-dimensional faithful, irreducible complex representation

of H. The representation ϕ is faithful since H is a subgroup of U(m). Let H0 be the identity

component of H. What we actually want to show is that the derived group [H0, H0] (or universal

cover of the derived group ˜[H0, H0]) of H0, is actually SU(m). The proof proceeds as follows.

Sketch of proof. Here all braid generators σi are conjugate and, in nontrivial cases, the eigenvalue

ratio is not ±1. Using the Jones skein relation q−1/2ρ(σi) − q1/2ρ(σ−1
i ) = q1/4 − q−1/4, one can

assert that the fundamental representation of U(m) restricted to H, ϕ|H , has the TEVP. We

would like to show that V |H is irreducible. This was done by a series of technical lemmas in [5].

Using TEVP, one first shows that the further restriction to the identity component H0, ϕ|H0 ,

is isotypic (i.e. a direct sum of several copies of a single irreducible representation of H) and then

irreducible. This implies that H0 is reductive (H0 = HDer
0 Z(H0), with Z(H0) the centre of H0),

so its derived group HDer
0 := [H0, H0] is semisimple and, it can be argued, ϕ|HDer

0
still satisfies

the TEVP and is still irreducible.

A final (harmless) variation on H is to pass to the universal cover Huc
0 := ˜[H0, H0]. The pulled

back representation ϕ|Huc
0

still has the TEVP and one finally arrives at the irreducible represen-

tations of semisimple Lie groups of bounded dimension, where one can apply the classification

of such representations [19] to show that the mysterious Huc
0 is none other than SU(m). If this

is so, then it follows that the sequence H → H0 → [H0, H0] → ˜[H0, H0] did nothing (beyond

the first arrow, which may have eliminated some components of H on which the determinant is

a nontrivial root of unity).

To complete the proof, let us summarise our situation: we have shown the existence of a

nontrivial semisimple groupHuc
0 with an irreducible unitary representation ϕ|Huc

0
. Furthermore, it

has a special element x whose image under the representation has exactly two distinct eigenvalues

whose ratio is not ±1. The remaining work12 is to search for this irreducible representation.

12In general, looking for which Jones representations are projectively dense, out of the classification [19], requires

some tricky combinatorics and rank-level duality [15].
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The closed image of ρ[3,3] is H ⊂ U(5), so our irreducible representation ϕ|Huc
0

of Huc
0 , coming

from U(5)’s fundamental, is exactly 5-dimensional (we don’t yet know the dimension of Huc
0 ).

From McKay and Patera, 1981 [19], there are four 5-dimensional irreducible representations,

which we list by rank:

1. rank = 1: (SU(2), 4$1),

2. rank = 2: (Sp(4), $2),

3. rank = 4: (SU(5), $i), i = 1, 4,

where $i is the fundamental weight. By examining the possible eigenvalues, we can exclude the

first two cases as follows.

In case (1), suppose x ∈ SU(2) has eigenvalues α and β in $1. Then under 4$1, it will have

αiβj , i+ j = 4 (i, j ≥ 0) as eigenvalues, which are too many (unless α
β = ±1). In case (2), since

5 is odd, every element in the image has at least one real eigenvalue, with the others coming

in reciprocal pairs. Again, there is no solution (unless there are two eigenvalues whose ratio is

±1). Therefore, by the TEVP, the only possible pair is case (3), viz. Huc
0
∼= SU(5). Since ϕ is

a faithful representation of HDer
0 , the image of HDer

0 is the same as that of Huc
0 which is SU(5).

From this we get the desired conclusion: SU(5) ⊂ H ⊂ U(5).

The same eigenvalue analysis can be done for the 8-dimensional case for ρ[4,2], which one will

get the irreducible representation (SU(8), $i), i = 1, 7; details are in [5]. This completes the

proof of our density theorem.

Example. For the (2,5) Young diagram λ = [3, 3], the representation ρ[3,3] is 5-dimensional.

With an appropriate ordering of the basis, ρ[3,3] takes the braid generators σi (projectively) to

these operators:

ρ[3,3](σ1) =



−1

q

−1

q

q


, ρ[3,3](σ2) =



q2

q+1 − q
√

[3]

q+1

− q
√

[3]

q+1 − 1
q+1

q2

q+1 − q
√

[3]

q+1

− q
√

[3]

q+1 − 1
q+1

q


, (3.1)

where [3] = q + q−1 + 1, and σi for i = 3, 4, 5 are similar; details can be found in [16]. It is clear

that the positive braid generators are sufficient for the Fibonacci anyons to support a universal

topological quantum computation.
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