Fibonacci Anyons

\&

Universal Topological Quantum Computation

Kevin Loo
YMSC, Tsinghua University

MATHEMATICAL PHYSICS SPRING 2021

Quantum Computer

Yuri Manin

Richard Feynman

Nature isn't classical . .. and if you want to make a simulation of Nature, you'd better make it quantum mechanical ...
—Richard Feynman (1981), Simulating Physics with Computers.

Topological Quantum Computer \& "Any" ons

- A. Kitaev (1997): System of non-Abelian anyons with suitable properties can efficiently simulate a quantum circuit
- M. Freedman, A. Kitaev, Z. Wang (2002): System of anyons can be simulated by a quantum circuit

Is there an anyonic computational model (a topological quantum computer) that can simulate a quantum circuit that exhibits universality?

Alexei Kitaev

Michael Freedman

Fibonacci Anyons

- 2 fields: 1, τ (non-Abelian quasiparticle)
(no field represents the underlying electron)
- A single nontrivial fusion rule:

$$
\tau \times \tau=\mathbf{1}+\tau
$$

- Bratteli diagram:

- Dimension of the Hilbert space with n quasiparticles, $\operatorname{dim}\left(\mathcal{H}_{n}\right)$
$=$ number of paths through Bratteli diagram terminating at $\mathbf{1}$
$=$ Fibonacci number $\operatorname{Fib}(n-1)$ for $n>2$
$\operatorname{Fib}(1)=\operatorname{Fib}(2)=1$,
$\operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$
Similarly, number of paths terminating at τ is $\operatorname{Fib}(n)$ for $n>1$
\longrightarrow Fibonacci anyon model
- Quantum dimension of the τ particle $=$ golden mean, $d_{\tau}=\phi \equiv(1+\sqrt{5}) / 2$ \longrightarrow Golden theory

Fibonacci model:

the simplest known non-Abelian model that is capable of universal topological quantum computation
(there exists a braid that corresponds to a unitary operation arbitrarily close to any desired operation)

Properties of Fibonacci model:

- Hilbert space can be understood via fusion rules and a basis changing F-matrix
- Braiding of two particles can be understood as a rotation R operator that produces a phase dependent on the quantum number of the two particles
\longrightarrow Encode qubits in the quantum number of some group of particles

Fusing Fibonacci Anyons

Fusion tree:

A fusion tree diagram depicts the basis states obtained by fusing fields together on different orders of fusion (although the space spanned by these states is independent of the order). The (fusion) F-matrix converts between the possible bases.
2τ particles: $\left|(\bullet, \bullet)_{\mathbf{1}}\right\rangle$ and $\left|(\bullet \bullet)_{\tau}\right\rangle$, with each • representing a τ particle 3τ particles:

$$
\begin{aligned}
& |0\rangle=\left|\left((\bullet \bullet)_{\mathbf{1}}, \bullet\right)_{\tau}\right\rangle=\bullet \bullet \mathbf{1}_{\tau} \bullet \stackrel{1}{\tau}_{\tau}^{\tau} \\
& |1\rangle=\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{\tau}\right\rangle=\bullet \bullet \tau \bullet \tau=\tau_{\tau}^{\tau}{ }_{\tau}^{\tau} \\
& |N\rangle=\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{1}\right\rangle=\bullet \bullet \tau \bullet 1=\tau_{1}^{\tau}
\end{aligned}
$$

- Here, the "quantum number" of an individual particle is τ.
- The three Fibonacci particles represent a qubit; the three possible states are labelled (far left) as the logical $|0\rangle,|1\rangle$ and noncomputational $|N\rangle$ of the qubit.
- Other common notations are the parenthesis/bracket (left), ellipse (middle), and fusion tree (right) notations.

Chosen order: $\left|\left((\bullet, \bullet)_{1}, \bullet\right)_{\tau}\right\rangle,\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{\tau}\right\rangle,\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{\mathbf{1}}\right\rangle$ Opposite order: $\left|\left(\bullet,(\bullet, \bullet)_{\mathbf{1}}\right)_{\tau}\right\rangle,\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\tau}\right\rangle,\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\mathbf{1}}\right\rangle$

$$
\left|\left(\bullet,(\bullet, \bullet)_{i}\right)_{k}\right\rangle=\sum_{j=1, \tau}\left(F_{k}^{\tau \tau \tau}\right)_{i j}\left|\left((\bullet, \bullet)_{j}, \bullet\right)_{k}\right\rangle
$$

$\bullet|N\rangle: \quad\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\mathbf{1}}\right\rangle=\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{\mathbf{1}}\right\rangle$

$$
F_{1}^{\tau \tau \tau}=1
$$

$\bullet|0\rangle: \quad\left|\left(\bullet,(\bullet, \bullet)_{\mathbf{1}}\right)_{\tau}\right\rangle=\sum_{j=\mathbf{1}, \tau}\left(F_{\tau}^{\tau \tau \tau}\right)_{\mathbf{1} j}\left|\left((\bullet, \bullet)_{j}, \bullet\right)_{\tau}\right\rangle$
$\bullet|1\rangle: \quad\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\tau}\right\rangle=\sum_{j=\mathbf{1}, \tau}\left(F_{\tau}^{\tau \tau \tau}\right)_{\tau j}\left|\left((\bullet, \bullet)_{j}, \bullet\right)_{\tau}\right\rangle$

$$
\left(F_{\tau}^{\tau \tau \tau}\right)=\left(\begin{array}{ll}
F_{\mathbf{1 1}} & F_{\mathbf{1} \tau} \\
F_{\tau \mathbf{1}} & F_{\tau \tau}
\end{array}\right)=\left(\begin{array}{cc}
1 / \phi & 1 / \sqrt{\phi} \\
1 / \sqrt{\phi} & -1 / \phi
\end{array}\right)
$$

4τ particles: Pentagon equation (compatibility equation I)

Braiding Fibonacci Anyons

Concept:

- Adiabatically braiding (winding) anyons around each other results in a unitary operation on a degenerate many-anyon Hilbert space
- Topological phase is imparted onto the anyons during the braid. As the anyons wind around each other, they pick up some phase due to the Aharonov-Bohm effect

2τ particles: (rotation) R-matrix

$$
\begin{aligned}
& R\left|(\bullet, \bullet)_{\mathbf{1}}\right\rangle=e^{-4 \pi i / 5}\left|(\bullet, \bullet)_{\mathbf{1}}\right\rangle \\
& R\left|(\bullet, \bullet)_{\tau}\right\rangle=-e^{-2 \pi i / 5}\left|(\bullet, \bullet)_{\tau}\right\rangle
\end{aligned}
$$

3τ particles: Hexagon equation (compatibility equation II)
We can rotate before or after changing bases and we get the same result

$$
\sum_{b}\left(F_{4}^{231}\right)_{c}^{b} R_{4}^{1 b}\left(F_{4}^{123}\right)_{b}^{a}=R_{c}^{13}\left(F_{4}^{213}\right)_{c}^{a} R_{a}^{12}
$$

Braid Group \& Its Representation

- Braid group on n particles (n strands):
where the braid group generators σ_{i} are the half right twists of the i-th strand about the $(i+1)$-th strand

- Braiding the σ 's produces a representation ρ_{n},

$$
\rho_{n}: B_{n} \rightarrow U\left(V_{n}\right)
$$

from the braid group B_{n} on n strands into the unitary transformations of V_{n} (ground state subspace of \mathcal{H}_{n})

Braid group (generators σ_{1}, σ_{2}):

Top: The two elementary braid operations σ_{1} and σ_{2} on three particles.
Bottom: Using these two braid operations and their inverses, an arbitrary braid on three strands can be built.
The braid shown here is written as $\sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2}^{-1} \sigma_{2}^{-1} \sigma_{1}$.

Braid group representations $\rho(\sigma)=F^{-1} R F$:

$$
\begin{aligned}
\sigma_{1}: \quad\left(\begin{array}{c}
|0\rangle \\
|1\rangle \\
|N\rangle
\end{array}\right) & \rightarrow \underbrace{\left(\begin{array}{cc|c}
e^{-4 \pi i / 5} & 0 & 0 \\
0 & -e^{-2 \pi i / 5} & 0 \\
\hline 0 & 0 & -e^{-2 \pi i / 5}
\end{array}\right)}_{\rho\left(\sigma_{1}\right)}\left(\begin{array}{c}
|0\rangle \\
|1\rangle \\
|N\rangle
\end{array}\right) \\
\sigma_{2}: \quad|0\rangle= & F_{\mathbf{1 1}}\left|\left(\bullet,(\bullet, \bullet)_{\mathbf{1}}\right)_{\tau}\right\rangle+F_{\tau \mathbf{1}}\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\tau}\right\rangle \\
R|0\rangle= & e^{-4 \pi i / 5} F_{\mathbf{1 1}}\left|\left(\bullet,(\bullet, \bullet)_{\mathbf{1}}\right)_{\tau}\right\rangle-e^{-2 \pi i / 5} F_{\tau \mathbf{1}}\left|\left(\bullet,(\bullet, \bullet)_{\tau}\right)_{\tau}\right\rangle \\
\rho\left(\sigma_{2}\right)|0\rangle= & \left(\left[F^{-1}\right]_{\mathbf{1 1}} e^{-4 \pi i / 5} F_{\mathbf{1 1}}-\left[F^{-1}\right]_{\mathbf{1} \tau} e^{-2 \pi i / 5} F_{\tau \mathbf{1}}\right)|0\rangle \\
& +\left(\left[F^{-1}\right]_{\tau \mathbf{1}} e^{-4 \pi i / 5} F_{\mathbf{1 1}}-\left[F^{-1}\right]_{\tau \tau} e^{-2 \pi i / 5} F_{\tau \mathbf{1}}|1\rangle\right. \\
= & -e^{-\pi i / 5} / \phi|0\rangle-i e^{-i \pi / 10} / \sqrt{\phi}|1\rangle
\end{aligned}
$$

Similar results can be derived for the other two basis states to give the matrix

$$
\rho\left(\sigma_{2}\right)=\left(\begin{array}{cc|c}
-e^{-\pi i / 5} / \phi & -i e^{-i \pi / 10} / \sqrt{\phi} & 0 \\
-i e^{-i \pi / 10} / \sqrt{\phi} & -1 / \phi & 0 \\
\hline 0 & 0 & -e^{-2 \pi i / 5}
\end{array}\right)
$$

Universal Topological Quantum Computation

Basic idea to simulate quantum computation with anyons:
(1) Choose a basis and restrict the Hilbert space
(2) Braid the anyons together
(0) Fuse the anyons at the end, and detect how they fuse in order to read the output of the system.

Single Qubit

2τ particles - 2 states: $\left(\left|(\bullet, \bullet)_{1}\right\rangle,\left|(\bullet, \bullet)_{\tau}\right\rangle\right) \quad x$

- Can never change $\left|(\bullet, \bullet)_{\mathbf{1}}\right\rangle$ to $\left|(\bullet, \bullet)_{\tau}\right\rangle$ by a single qubit operation (braid once)
- Amplitude that ends up in this state is known as "leakage error"
3τ particles - 2 states: $\left(\left|\left((\bullet, \bullet)_{\mathbf{1}}, \bullet\right)_{\tau}\right\rangle \equiv|0\rangle,\left|\left((\bullet, \bullet)_{\tau}, \bullet\right)_{\tau}\right\rangle \equiv|1\rangle\right)$
\& 1 non-computational state: $\left.\left.\left(\mid(\bullet, \bullet)_{\tau}, \bullet\right)_{1}\right\rangle \equiv|N\rangle\right)$
- Do single qubit operations with no leakage
- 3d Hilbert space for three particles
- $\rho\left(\sigma_{1}\right)$ and $\rho\left(\sigma_{2}\right)$ are block diagonal, never mix $|N\rangle$ with computational space $|0\rangle$ and $|1\rangle$

$$
\begin{aligned}
& \sigma_{2}^{3} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{-2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{4} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2} \approx \sigma_{1}^{2}
\end{aligned}
$$

Constructing a braid on three strands moving only the blue particle has the same effect as interchanging the two green strands

Multiple Qubits

- Able to perform single qubit operations \& 2-qubit CNOT entangling gates
- Braiding together (physically "entangling"!) the particles/strands from two different qubits

$$
|0\rangle=\left|\left((\bullet, \bullet)_{\mathbf{1}}, \bullet\right)_{\tau}\right\rangle
$$

Dense Images

- M. Freedman et al. (2000) generally guarantees that braids corresponding to any desired unitary operation exist on a 2-qubit Hilbert space.
- Braid group representations have dense images in the unitary group \longrightarrow a quantum state of Fibonacci anyons is said to be able to support universal quantum computation
- More precisely, an arbitrary unitary transformation can be approximated, up to a phase, by a transformation in $\rho_{n}\left(B_{n}\right)$ to within any desired accuracy.
- Projective group $P U\left(V_{n}\right)$: a set of unitary transformations on V_{n} with two transformations identified if they differ only by a phase.
- $\rho_{n}\left(B_{n}\right)$ is dense in $P U\left(V_{n}\right)$, i.e. the intersection of all closed sets containing $\rho_{n}\left(B_{n}\right)$ should simply be $P U\left(V_{n}\right)$.

$S O(3)_{2}$ Chern-Simons (CS) Theory

Fibonacci anyons can be constructed as the $j=0$ and $j=1$ (quasi)particles in ("even" part of) $S U(2)_{3} \mathrm{CS}$ theory satisfying the fusion rules of Fibonacci anyons

- For a modestly large number (≥ 7) of σ 's, M. Freedman et al. $(2000,2001)$ shows that the braid group representations associated with $S U(2)_{3} \mathrm{CS}$ theory are dense in $S U\left(V_{n}\right)$, and hence in $P U\left(V_{n}\right)$.
- Known as the Jones representation, which satisfies a key two eigenvalue property (TEVP):
image matrix of each braid generator σ_{i} under the Jones representation has exactly two distinct eigenvalues whose ratio is not ± 1.

$S U(2)_{3}$ Topological Modular Functor (TMF)

MTC: modular tensor categories, MF: modular functors,
TQFT: topological quantum field theory, CFT: conformal field theory
[Bakalov and Kirilov, Lectures on Tensor Categories and Modular Functors]

Jones representation of braid group B_{6} of 6 Fibonacci anyons \Uparrow
Representation of $S U(2)_{3}$ CSMF of braids at the fifth root of unity $q=e^{2 \pi i / 5}$
$S U(2)_{3}$ CSMF: build the "Chern-Simons5" (CS5) model which efficiently and fault tolerantly simulates the computations of an exact quantum circuit model

Density Theorem

Let $\rho:=\rho_{[3,3]} \oplus \rho_{[4,2]}: B_{6} \rightarrow U(5) \times U(8)$ be the Jones representation of the braid group B_{6} at the 5 -th root of unity $q=e^{\frac{2 \pi i}{5}}$. Then the closure of the image of $\rho\left(B_{6}\right)$ in $U(5) \times U(8)$ contains $S U(5) \times S U(8)$.

- Let H be the closure of the image, $\overline{\text { image }(\rho)}$, of $\rho_{[3,3]}$ in $U(5)$ (or of $\rho_{[4,2]}$ in $U(8))$ which we will try to identify. H is a compact subgroup of $U(m)$ ($m=5$ or 8) of positive dimension.
- Let φ be the induced m-dimensional faithful, irreducible complex representation of H, and let H_{0} be the identity component of H.
- Actually want to show is that the derived group [H_{0}, H_{0}] (or universal cover of the derived group $\left[\widetilde{H_{0}, H_{0}}\right]$) is actually $S U(m)$.
[M. Freedman et al. (2000), arXiv:quant-ph/0001108]
[M. Freedman et al. (2001), arXiv:math/0103200]

Sketch of proof:

- Using the Jones skein relation $q^{-1 / 2} \rho\left(\sigma_{i}\right)-q^{1 / 2} \rho\left(\sigma_{i}^{-1}\right)=q^{1 / 4}-q^{-1 / 4}$, one can assert that the fundamental representation of $U(m)$ restricted to H, $\left.\varphi\right|_{H}$, has the $\operatorname{TEVP}\left(q^{3 / 4} /-q^{1 / 4} \neq \pm 1\right)$.
- Further restricting to the identity component $H_{0},\left.\varphi\right|_{H_{0}}$ is isotypic (i.e. a direct sum of several copies of a single irreducible representation of H) and then irreducible. This implies that H_{0} is reductive ($H_{0}=H_{0}^{\text {Der }} Z\left(H_{0}\right)$, with $Z\left(H_{0}\right)$ the centre of $\left.H_{0}\right)$, so its derived group $H_{0}^{\text {Der }}:=\left[H_{0}, H_{0}\right]$ is semisimple and, it can be argued, $\left.\varphi\right|_{H_{0}^{\text {Der }}}$ still satisfies the TEVP and is still irreducible.
- A final (harmless) variation on H is to pass to the universal cover
 irreducible.
- The sequence $H \rightarrow H_{0} \rightarrow\left[H_{0}, H_{0}\right] \rightarrow\left[\widetilde{H_{0}, H_{0}}\right]$ did nothing! (Nothing changes beyond the first arrow, which may have eliminated some components of H on which the determinant is a nontrivial root of unity).

Sketch of proof (cont'd):

- The closed image of $\rho_{[3,3]}$ is $H \subset U(5)$, so our irreducible representation $\left.\varphi\right|_{H_{0}^{u c}}$, coming from $U(5)$'s fundamental, is exactly 5-dimensional.
- From tables in [McKay and Patera (1981)],
(1) rank =1: $\left(S U(2), 4 w_{1}\right)$,
(2) rank $=2:\left(S p(4), w_{2}\right)$,
(3) rank = 4: $\left(S U(5), w_{i}\right), i=1,4$,
where w_{i} is the fundamental weight. By examining the possible eigenvalues, we can exclude the first two cases as follows.
(1) Suppose $x \in S U(2)$ has eigenvalues α and β in w_{1}. Then under $4 w_{1}$, it will have $\alpha^{i} \beta^{j}, i+j=4\left(i, j \in \mathbb{Z}_{+}\right)$as eigenvalues, which are too many (unless $\frac{\alpha}{\beta}= \pm 1$).
(2) Since 5 is odd, every element in the image has at least one real eigenvalue, with the others coming in reciprocal pairs. Again, there is no solution (unless there are two eigenvalues whose ratio is ± 1).
(3) Only possible pair: $H_{0}^{u c} \cong S U(5)$. Since φ is a faithful representation of $H_{0}^{D e r}$, the image of $H_{0}^{D e r}$ is the same as that of $H_{0}^{u c}$ which is $S U(5)$.
Same eigenvalue analysis can be done for the 8 -dimensional case for $\rho_{[4,2]}$, where one will get the irreducible representation $\left(S U(8), w_{i}\right), i=1,7$.
Conclusion: $S U(5) \subset H_{U(5)} \subset U(5), S U(8) \subset H_{U(8)} \subset U(8)$.

Example: (5-dimensional) representations $\rho_{[3,3]}$ for braid generators σ_{i}

$$
\begin{aligned}
& \rho_{[3,3]}\left(\sigma_{1}\right)=\left(\begin{array}{ccccc}
-1 & & & & \\
& q & & & \\
& & -1 & & \\
& & & q & \\
& & & q
\end{array}\right), \\
& \rho_{[3,3]}\left(\sigma_{2}\right)=\left(\begin{array}{ccccc}
\frac{q^{2}}{q+1} & -\frac{q \sqrt{[3]}}{q+1} & \\
-\frac{q \sqrt{[3]}}{q+1} & -\frac{1}{q+1} & & \\
& & & \frac{q^{2}}{q+1} & -\frac{q \sqrt{[3]}}{q+1} \\
& & & -\frac{q \sqrt{[3]}}{q+1} & -\frac{1}{q+1} \\
& & & & q
\end{array}\right),
\end{aligned}
$$

where $[3]=q+q^{-1}+1$, and $\rho_{[3,3]}\left(\sigma_{i}\right)$ for $i=3,4,5$ are similar.
[Funar (1998), arXiv:math/9804047]

