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Topological Quantum Computer

Quantum Computer

Yuri Manin Richard Feynman

Nature isn’t classical . . . and if you want to make a simulation of Nature, you’d
better make it quantum mechanical . . .

—Richard Feynman (1981), Simulating Physics with Computers.

2 / 25



Topological Quantum Computer

Topological Quantum Computer & “Any”ons

A. Kitaev (1997): System of non-Abelian anyons with suitable properties
can efficiently simulate a quantum circuit

M. Freedman, A. Kitaev, Z. Wang (2002): System of anyons can be
simulated by a quantum circuit

Is there an anyonic computational model (a topological quantum computer) that
can simulate a quantum circuit that exhibits universality?

Alexei Kitaev Michael Freedman
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Fibonacci Anyons

Fibonacci Anyons

2 fields: 1, τ (non-Abelian quasiparticle)
(no field represents the underlying electron)
A single nontrivial fusion rule:

τ × τ = 1+ τ

Bratteli diagram:

Dimension of the Hilbert space with n quasiparticles, dim(Hn)
= number of paths through Bratteli diagram terminating at 1
= Fibonacci number Fib(n− 1) for n > 2

Fib(1) = Fib(2) = 1,
Fib(n) = Fib(n− 1) + Fib(n− 2)

Similarly, number of paths terminating at τ is Fib(n) for n > 1
−→ Fibonacci anyon model
Quantum dimension of the τ particle = golden mean, dτ = φ ≡ (1 +

√
5)/2

−→ Golden theory
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Fibonacci Anyons

Fibonacci model:
the simplest known non-Abelian model that is capable of universal topological
quantum computation
(there exists a braid that corresponds to a unitary operation arbitrarily close to
any desired operation)

Properties of Fibonacci model:

Hilbert space can be understood via fusion rules and a basis changing
F -matrix

Braiding of two particles can be understood as a rotation R operator that
produces a phase dependent on the quantum number of the two particles

−→ Encode qubits in the quantum number of some group of particles
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Fusing & Braiding

Fusing Fibonacci Anyons

Fusion tree:

A fusion tree diagram depicts the basis states obtained by fusing fields together on
different orders of fusion (although the space spanned by these states is independent of
the order). The (fusion) F -matrix converts between the possible bases.
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Fusing & Braiding

2 τ particles: |(•, •)1〉 and |(•, •)τ 〉, with each • representing a τ particle
3 τ particles:

Here, the “quantum number” of an individual particle is τ .

The three Fibonacci particles represent a qubit; the three possible states are
labelled (far left) as the logical |0〉, |1〉 and noncomputational |N〉 of the
qubit.

Other common notations are the parenthesis/bracket (left), ellipse (middle),
and fusion tree (right) notations.
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Fusing & Braiding

Chosen order: |((•, •)1, •)τ 〉 , |((•, •)τ , •)τ 〉 , |((•, •)τ , •)1〉
Opposite order: |(•, (•, •)1)τ 〉, |(•, (•, •)τ )τ 〉, |(•, (•, •)τ )1〉

|(•, (•, •)i)k〉 =
∑
j=1,τ

(F τττk )ij |((•, •)j , •)k〉

|N〉: |(•, (•, •)τ )1〉 = |((•, •)τ , •)1〉

F τττ1 = 1

|0〉: |(•, (•, •)1)τ 〉 =
∑
j=1,τ (F

τττ
τ )1j |((•, •)j , •)τ 〉

|1〉: |(•, (•, •)τ )τ 〉 =
∑
j=1,τ (F

τττ
τ )τj |((•, •)j , •)τ 〉

(F ττττ ) =

(
F11 F1τ

Fτ1 Fττ

)
=

(
1/φ 1/

√
φ

1/
√
φ −1/φ

)
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Fusing & Braiding

4 τ particles: Pentagon equation (compatibility equation I)

(
F 12c
5

)a
d

(
F a345

)b
c
=
∑
e

(
F 234
d

)e
c

(
F 1e4
5

)b
d

(
F 123
b

)a
e
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Fusing & Braiding

Braiding Fibonacci Anyons

Concept:

Adiabatically braiding (winding) anyons around each other results in a unitary
operation on a degenerate many-anyon Hilbert space

Topological phase is imparted onto the anyons during the braid. As the
anyons wind around each other, they pick up some phase due to the
Aharonov-Bohm effect

2 τ particles: (rotation) R-matrix

R |(•, •)1〉 = e−4πi/5 |(•, •)1〉
R |(•, •)τ 〉 = −e−2πi/5 |(•, •)τ 〉
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Fusing & Braiding

3 τ particles: Hexagon equation (compatibility equation II)
We can rotate before or after changing bases and we get the same result

∑
b

(
F 231
4

)b
c
R1b

4

(
F 123
4

)a
b
= R13

c

(
F 213
4

)a
c
R12
a
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Fusing & Braiding

Braid Group & Its Representation

Braid group on n particles (n strands):

Bn =

{
σ1, · · · , σn−1

∣∣∣∣ σiσj = σjσi, |i− j| ≥ 2,
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 1

}
,

where the braid group generators σi are the half right twists of the i-th
strand about the (i+ 1)-th strand

σiσj = σjσi σiσi+1σi = σi+1σiσi+1

Braiding the σ’s produces a representation ρn,

ρn : Bn → U(Vn)

from the braid group Bn on n strands into the unitary transformations of Vn
(ground state subspace of Hn)
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Fusing & Braiding

Braid group (generators σ1, σ2):

Top: The two elementary braid operations σ1 and σ2 on three particles.
Bottom: Using these two braid operations and their inverses, an arbitrary braid on three
strands can be built.
The braid shown here is written as σ2σ1σ1σ

−1
2 σ−1

2 σ1.
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Fusing & Braiding

Braid group representations ρ(σ) = F−1RF :

σ1 :

 |0〉|1〉
|N〉

 →
 e−4πi/5 0 0

0 −e−2πi/5 0

0 0 −e−2πi/5


︸ ︷︷ ︸

ρ(σ1)

 |0〉|1〉
|N〉



σ2 : |0〉 = F11 |(•, (•, •)1)τ 〉+ Fτ1 |(•, (•, •)τ )τ 〉
R |0〉 = e−4πi/5F11 |(•, (•, •)1)τ 〉 − e−2πi/5Fτ1 |(•, (•, •)τ )τ 〉

ρ(σ2) |0〉 = ([F−1]11e
−4πi/5F11 − [F−1]1τe

−2πi/5Fτ1) |0〉
+ ([F−1]τ1e

−4πi/5F11 − [F−1]ττe
−2πi/5Fτ1 |1〉

= −e−πi/5/φ |0〉 − ie−iπ/10/
√
φ |1〉

Similar results can be derived for the other two basis states to give the matrix

ρ(σ2) =

 −e−πi/5/φ −ie−iπ/10/
√
φ 0

−ie−iπ/10/
√
φ −1/φ 0

0 0 −e−2πi/5


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Universal Topological Quantum Computation

Universal Topological Quantum Computation

Basic idea to simulate quantum computation with anyons:
1 Choose a basis and restrict the Hilbert space
2 Braid the anyons together
3 Fuse the anyons at the end, and detect how they fuse in order to read the

output of the system.
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Universal Topological Quantum Computation

Single Qubit

2 τ particles – 2 states: (|(•, •)1〉, |(•, •)τ 〉) 7

Can never change |(•, •)1〉 to |(•, •)τ 〉 by a single qubit operation (braid
once)
Amplitude that ends up in this state is known as “leakage error”

3 τ particles – 2 states: (|((•, •)1, •)τ 〉 ≡ |0〉 , |((•, •)τ , •)τ 〉 ≡ |1〉)
& 1 non-computational state: (|((•, •)τ , •)1〉 ≡ |N〉) 3

Do single qubit operations with no leakage
3d Hilbert space for three particles
ρ(σ1) and ρ(σ2) are block diagonal, never mix |N〉 with computational space
|0〉 and |1〉

Constructing a braid on three strands moving only the blue particle has the same effect
as interchanging the two green strands
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Universal Topological Quantum Computation

Multiple Qubits

Able to perform single qubit operations & 2-qubit CNOT entangling gates

Braiding together (physically “entangling”!) the particles/strands from two
different qubits

|0〉 = |((•, •)1, •)τ 〉

|1〉 = |((•, •)τ , •)τ 〉
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Universal Topological Quantum Computation

Dense Images

M. Freedman et al. (2000) generally guarantees that braids corresponding to
any desired unitary operation exist on a 2-qubit Hilbert space.

Braid group representations have dense images in the unitary group
−→ a quantum state of Fibonacci anyons is said to be able to support
universal quantum computation

More precisely, an arbitrary unitary transformation can be approximated, up
to a phase, by a transformation in ρn(Bn) to within any desired accuracy.

Projective group PU(Vn): a set of unitary transformations on Vn with two
transformations identified if they differ only by a phase.

ρn(Bn) is dense in PU(Vn), i.e. the intersection of all closed sets containing
ρn(Bn) should simply be PU(Vn).
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Universal Topological Quantum Computation

SO(3)2 Chern-Simons (CS) Theory

Fibonacci anyons can be constructed as the j = 0 and j = 1 (quasi)particles in
(“even” part of) SU(2)3 CS theory satisfying the fusion rules of Fibonacci anyons

For a modestly large number (≥ 7) of σ’s, M. Freedman et al. (2000, 2001)
shows that the braid group representations associated with SU(2)3 CS theory
are dense in SU(Vn), and hence in PU(Vn).

Known as the Jones representation, which satisfies a key two eigenvalue
property (TEVP):
image matrix of each braid generator σi under the Jones representation has
exactly two distinct eigenvalues whose ratio is not ±1.
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Universal Topological Quantum Computation

SU(2)3 Topological Modular Functor (TMF)

MTC: modular tensor categories, MF: modular functors,
TQFT: topological quantum field theory, CFT: conformal field theory

[Bakalov and Kirilov, Lectures on Tensor Categories and Modular Functors]

Jones representation of braid group B6 of 6 Fibonacci anyons~�
Representation of SU(2)3 CSMF of braids at the fifth root of unity q = e2πi/5

SU(2)3 CSMF: build the “Chern-Simons5” (CS5) model which efficiently and
fault tolerantly simulates the computations of an exact quantum circuit model
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Universal Topological Quantum Computation

Density Theorem

Let ρ := ρ[3,3] ⊕ ρ[4,2] : B6 → U(5) × U(8) be the Jones representation of

the braid group B6 at the 5-th root of unity q = e
2πi
5 . Then the closure of

the image of ρ(B6) in U(5)× U(8) contains SU(5)× SU(8).

Let H be the closure of the image, image(ρ), of ρ[3,3] in U(5) (or of ρ[4,2] in
U(8)) which we will try to identify. H is a compact subgroup of U(m)
(m = 5 or 8) of positive dimension.

Let ϕ be the induced m-dimensional faithful, irreducible complex
representation of H, and let H0 be the identity component of H.

Actually want to show is that the derived group [H0, H0] (or universal cover

of the derived group ˜[H0, H0]) is actually SU(m).
[M. Freedman et al. (2000), arXiv:quant-ph/0001108]

[M. Freedman et al. (2001), arXiv:math/0103200]
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Universal Topological Quantum Computation

Sketch of proof:

Using the Jones skein relation q−1/2ρ(σi)− q1/2ρ(σ−1
i ) = q1/4 − q−1/4, one

can assert that the fundamental representation of U(m) restricted to H,
ϕ|H , has the TEVP (q3/4/− q1/4 6= ±1).

Further restricting to the identity component H0, ϕ|H0 is isotypic (i.e. a
direct sum of several copies of a single irreducible representation of H) and
then irreducible. This implies that H0 is reductive (H0 = HDer

0 Z(H0), with
Z(H0) the centre of H0), so its derived group HDer

0 := [H0, H0] is
semisimple and, it can be argued, ϕ|HDer0

still satisfies the TEVP and is still
irreducible.

A final (harmless) variation on H is to pass to the universal cover

Huc
0 := ˜[H0, H0]. The representation ϕ|Huc0

still has the TEVP and is still
irreducible.

The sequence H → H0 → [H0, H0] → ˜[H0, H0] did nothing!
(Nothing changes beyond the first arrow, which may have eliminated some
components of H on which the determinant is a nontrivial root of unity).
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Universal Topological Quantum Computation

Sketch of proof (cont’d):

The closed image of ρ[3,3] is H ⊂ U(5), so our irreducible representation
ϕ|Huc0

, coming from U(5)’s fundamental, is exactly 5-dimensional.

From tables in [McKay and Patera (1981)],
1 rank = 1: (SU(2), 4w1),
2 rank = 2: (Sp(4), w2),
3 rank = 4: (SU(5), wi), i = 1, 4,

where wi is the fundamental weight. By examining the possible eigenvalues,
we can exclude the first two cases as follows.

1 Suppose x ∈ SU(2) has eigenvalues α and β in w1. Then under 4w1, it will
have αiβj , i+ j = 4 (i, j ∈ Z+) as eigenvalues, which are too many (unless
α
β
= ±1).

2 Since 5 is odd, every element in the image has at least one real eigenvalue,
with the others coming in reciprocal pairs. Again, there is no solution (unless
there are two eigenvalues whose ratio is ±1).

3 Only possible pair: Huc
0
∼= SU(5). Since ϕ is a faithful representation of

HDer
0 , the image of HDer

0 is the same as that of Huc
0 which is SU(5).

Same eigenvalue analysis can be done for the 8-dimensional case for ρ[4,2],
where one will get the irreducible representation (SU(8), wi), i = 1, 7.
Conclusion: SU(5) ⊂ HU(5) ⊂ U(5), SU(8) ⊂ HU(8) ⊂ U(8).
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Universal Topological Quantum Computation

Example: (5-dimensional) representations ρ[3,3] for braid generators σi

ρ[3,3](σ1) =


−1

q
−1

q
q

 ,

ρ[3,3](σ2) =



q2

q+1 − q
√

[3]

q+1

− q
√

[3]

q+1 − 1
q+1

q2

q+1 − q
√

[3]

q+1

− q
√

[3]

q+1 − 1
q+1

q


,

where [3] = q + q−1 + 1, and ρ[3,3](σi) for i = 3, 4, 5 are similar.
[Funar (1998), arXiv:math/9804047]

24 / 25



Thanks!
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