Memory Effect of Gravity \& Infrared Triangle

Kevin Loo
YMSC, Tsinghua University
ADVANCED TOPICS OF GRAVITY SPRING 2021

Gravitational Wave

LIGO - A GIGANTIC INTERFEROMETER

> If the arms are disturbed by a gravitational wave, the light waves will have travelled different distances. Light then escapes through the splitter and hits the detector.

$$
\therefore \text { WWM } \begin{aligned}
& \text { LIGHT WAVES HIT } \\
& \text { THELIGHT DETECTOR }
\end{aligned}
$$

BEAM SPLITTER LIGHT DETECTOR

Gravitational Wave Memory Effect

A subtle DC effect: passage of gravitational waves (GWs) produces a permanent shift in the relative positions of a pair of inertial detectors.

Linear memory [Zeldovich, Polnarev '74][Braginsky, Thorne '87]

- Arises from the non-oscillatory motion of a source, especially due to unbound masses
- E.g. mass/neutrino ejection in supernovas/gamma-ray bursts

Nonlinear memory [Christodoulou '91]

- Arises from the GWs produced by GWs
- Produced by all sources of GWs
- Allows us to probe one of the most nonlinear features of GR

Nonlinear memory from binary black-hole mergers

The wave no longer returns to the zero-point of its oscillation. This growing-offset is called the memory.

Detection

- The memory effect is harder to see than gravity waves themselves but has a decent chance of being measured in the coming decades
- A variety of methods of detection of the memory effect has been proposed at LIGO [Lasky et al.], via a pulsar timing array [van Haasteren, Levin], etc.

Linear Memory

Metric of flat Minkowski space in retarded coordinates $(u=t-r)$ near \mathcal{I}^{+}:

$$
d s^{2}=-d u^{2}-2 d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z}
$$

Metric that is asymptotic to, but not exactly equal to, the flat metric?

- Work in Bondi coordinates/gauge (u, r, z, \bar{z}), $\Theta^{A}=(z, \bar{z})$:

$$
d s^{2}=-U d u^{2}-2 e^{2 \beta} d u d r+g_{A B}\left(d \Theta^{A}+\frac{1}{2} U^{A} d u\right)\left(d \Theta^{B}+\frac{1}{2} U^{B} d u\right)
$$

$g_{r r}=g_{r A}=0$: local diffeomorphism invariance

- Impose asymptotic flatness at large r with fixed (u, z, \bar{z}) - boundary falloff conditions on the metric components:

$$
\begin{aligned}
U & =1-\frac{2 m_{B}}{r}+\mathcal{O}\left(\frac{1}{r^{2}}\right), \quad \beta=\mathcal{O}\left(\frac{1}{r^{2}}\right) \\
U_{A} & =\frac{1}{r^{2}} D^{B} C_{B A}+\mathcal{O}\left(\frac{1}{r^{3}}\right), \quad g_{A B}=r^{2} \gamma_{A B}+r C_{A B}+\mathcal{O}(1)
\end{aligned}
$$

where $\gamma_{A B}$ is the two-dimensional metric on the celestial sphere, $\mathcal{C S}^{2}$, D_{A} is the covariant derivative with respect to $\gamma_{A B}$.

Natural choice made by Bondi, van der Burg, Metzner, and Sachs (BMS):

$$
\begin{aligned}
d s^{2}= & -d u^{2}-2 d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z} \\
& +\frac{2 m_{B}}{r} d u^{2}+r C_{z z} d z^{2}+r C_{\bar{z} \bar{z}} d \bar{z}^{2}+D^{z} C_{z z} d u d z+D^{\bar{z}} C_{\bar{z} \bar{z}} d u d \bar{z} \\
& +\frac{1}{r}\left(\frac{4}{3}\left(N_{z}+u \partial_{z} m_{B}\right)-\frac{1}{4} \partial_{z}\left(C_{z z} C^{z z}\right)\right) d u d z+c . c .+\cdots
\end{aligned}
$$

Near \mathcal{I}^{+}, spacetime is flat to leading order, retarded time $u=t-r+\cdots$
$m_{B}, N_{z}, C_{z z}$ depend on (u, z, \bar{z}) but not on r
(1) m_{B} : Bondi mass aspect ($m_{B}=G M$ for Kerr spacetimes)
(2) N_{z} : angular momentum aspect
(3) $C_{z z}$: perturbation of metric, transverse to direction of propagation of GWs
"Bondi news tensor" $N_{z z}=\partial_{u} C_{z z}$

- Inertial detectors, e.g. eLISA detectors moving on geodesic orbits
- Memory effect characterises a pair of inertial detectors stationed near \mathcal{I}^{+}in a region with no Bondi news ($\left.N_{z z}=\partial_{u} C_{z z}=0\right)$ at both late and early times
- At intermediate times, gravity waves may pass through, causing oscillating distortions in their relative separations, denoted $\left(s^{z}, s^{\bar{z}}\right)$

Geodesic deviation equation for a small perturbation around the flat space:

$$
r^{2} \gamma_{z \bar{z}} \partial_{u}^{2} s^{\bar{z}}=-R_{u z u z} s^{z} \quad\left(R_{u z u z}=-\frac{r}{2} \partial_{u}^{2} C_{z z}\right)
$$

Integrating this equation reveals a DC effect: initial and final separations differ by (in retarded coordinates)

$$
\Delta s^{\bar{z}}=\frac{\gamma^{z \bar{z}}}{2 r} \Delta C_{z z} s^{z}
$$

gravitational memory effect

The difference $\Delta C_{z z}$ between initial and final transverse metric components need not vanish, as flatness does not require $C_{z z}=0$.

The Infrared Triangle

Deep IR physics is extremely rich!

(I) Memory Effect $\stackrel{\text { Fourier Transform }}{\longleftrightarrow}$ Soft Theorem

Braginsky-Thorne formula for the

 gravitational memory effect(Scattering of black holes)
[V. Braginsky, K. S. Thorne '87]
permanent change in the gravitational-wave field (the burst's memory) $\delta h_{i j}^{\mathrm{TT}}$ is equal to the 'transverse, traceless (TT) part ${ }^{36}$ of the time-independent, Coulomb-type, $1 / r$ field of the final system minus that of the initial system. If $\mathbf{P}^{\boldsymbol{A}}$ is the 4 -momentum of mass A of the system and P_{i}^{A} is a spatial component of that 4 -momentum in the rest frame of the distant observer, and if \mathbf{k} is the past-directed null 4 -vector from observer to source, then $\delta h_{i j}^{\mathrm{TT}}$ has the following form:

$$
\begin{equation*}
\delta h_{i j}^{\mathrm{TT}}=\delta\left(\sum_{A} \frac{4 P_{i}^{A} P_{j}^{A}}{\mathbf{k} \cdot \mathbf{P}^{A}}\right)^{\mathrm{TT}} \tag{1}
\end{equation*}
$$

Here we use units with $G=c=1$. In the observer's local Car-

Observation

position-space

Weinberg soft graviton theorem

(Scattering of elementary particles)
[S. Weinberg '65]

The dominance of the $1 /(p \cdot q)$ pole in (2.5) implies that the effect of attaching one soft-graviton line to an arbitrary diagram is to supply a factor equal to the sum of (2.5) over all external lines in the diagram

$$
\begin{equation*}
(8 \pi G)^{1 / 2} \sum_{n} \eta_{n} p_{n}{ }^{\mu} p_{n}{ }^{\nu} /\left[p_{n} \cdot q-i \eta_{n} \epsilon\right] . \tag{2.7}
\end{equation*}
$$

Memory Effect $\stackrel{\text { Fourier Transform }}{\longleftrightarrow}$ Soft Theorem

$$
\delta h_{i j}^{T T}=\delta\left(\sum_{A} \frac{4 P_{i}^{A} P_{j}^{A}}{\mathbf{k} \cdot \mathbf{P}^{A}}\right)^{T T} \quad(8 \pi G)^{1 / 2} \sum_{n} \frac{\varepsilon_{\mu \nu} p_{n}^{\mu} p_{n}^{\nu}}{\mathbf{q} \cdot \mathbf{p}_{n}}
$$

- Replace the four-momenta P_{i}^{A} of colliding stars or black holes with the four-momenta p_{n}^{μ} of soft graviton
- Account for the different conventions for Newton's constant G and normalisation
- Substitute the graviton momentum \mathbf{q} with its energy ω times the unit null vector \mathbf{k} via $\mathbf{q}=\omega \mathbf{k}$
- Act with a Fourier transform $\int d t e^{i \omega t}$ on the Weinberg momentum-space formula to obtain the Braginsky-Thorne formula

Memory Effect $\stackrel{\text { Fourier Transform }}{\longleftrightarrow}$ Soft Theorem

- Soft gravitons may seem a bit unphysical, because it takes longer and longer to measure them as $E \rightarrow 0$.
- Surprise! Memory effect can be measured in a finite time, because the Fourier transform of the Weinberg pole is a step function in retarded time.
- At very long distances, astrophysical black holes and elementary particles are both effectively pointlike!

Universality of IR phenomena

(II) Soft Theorem $\stackrel{\text { Ward Identity }}{\longleftrightarrow}$ Asymptotic Symmetry

Conserved charge Q generate supertranslations. In the quantum theory, Q commute with the \mathcal{S}-matrix:

$$
Q \mathcal{S}-\mathcal{S} Q=0
$$

Ward identity

$$
\langle\text { out }| Q \mathcal{S} \mid \text { in }\rangle \sim \text { Weinberg pole } \times\langle\text { out }| \mathcal{S} \mid \text { in }\rangle
$$

is precisely Weinberg's soft graviton theorem.

(III) Asymptotic Symmetry $\stackrel{\text { Vacuum Transition }}{\longleftrightarrow}$ Memory Effect

- An array of evenly spaced inertial detectors (black dots) on the sphere $\mathcal{C S}^{2}$ near \mathcal{I}^{+}will be permanently displaced (red arrows) by the passage of gravitational radiation
- A pulse of radiation passing through \mathcal{I}^{+}: a domain wall connecting two diffeomorphic but BMS-inequivalent vacua that are related by an asymptotic symmetry
- Displacements/supertranslations: measurement of the BMS diffeomorphism, which relates the vacua before and after the passage of the radiation
[Bondi, van der Burg, Metzner, and Sachs '62]

Supertranslations [Bondi, van der Burg, Metzner, and Sachs '62]

$$
\mathcal{L}_{f} C_{z z}=f \partial_{u} C_{z z}-2 D_{z}^{2} f
$$

No energy flux or retarded time dependence of the asymptotic data at early and late times:

$$
\partial_{u} C_{z z}^{\text {early }}=0=\partial_{u} C_{z z}^{\text {late }}
$$

BMS vacuum transition: early and late geometries are related by a supertranslation

$$
\begin{aligned}
\Delta C_{z z} & =C_{z z}^{\text {late }}-C_{z z}^{\text {early }}=-2 D_{z}^{2} f \\
f & =\mathcal{L}_{f} C(z, \bar{z})
\end{aligned}
$$

$C(z, \bar{z})$ is the Goldstone boson of spontaneously broken supertranslation invariance.

$$
\Delta C_{z z}=C_{z z}^{\text {late }}-C_{z z}^{\text {early }}=-2 D_{z}^{2} f,
$$

where

$$
f=\int d^{2} w \gamma_{w \bar{w}} G(z, \bar{z} ; w, \bar{w})\left(\int_{u_{i}}^{u_{f}} d u T_{u u}(w, \bar{w})+\Delta m_{B}\right)
$$

uu stress tensor:

$$
T_{u u}=\frac{1}{4} N_{z z} N^{z z}+4 \pi G_{r \rightarrow \infty} \lim _{\rightarrow}\left(r^{2} T_{u u}^{R}\right)
$$

Green's function:

$$
G(z, \bar{z} ; w, \bar{w})=\frac{1}{\pi} \sin ^{2} \frac{\Delta \Theta}{2} \log \left(\sin ^{2} \frac{\Delta \Theta}{2}\right) \quad\left(\sin ^{2} \frac{\Delta \Theta}{2}=\frac{|z-w|^{2}}{(1+z \bar{z})(1+w \bar{w})}\right)
$$

with $\Delta \Theta$ the angle on $\mathcal{C S}{ }^{2}$ between (z, \bar{z}) and (w, \bar{w})
Change in proper distance between the detectors:

$$
\Delta L=\frac{r_{0}}{2 L_{0}}\left[\Delta C_{z z}\left(z_{0}, \bar{z}_{0}\right) \delta z^{2}+\Delta C_{\bar{z} \bar{z}}\left(z_{0}, \bar{z}_{0}\right) \delta \bar{z}^{2}\right]
$$

supertranslation induced by GWs passing through \mathcal{I}^{+} Memory Effect $\stackrel{\text { Vacuum Transition }}{\longleftrightarrow}$ Asymptotic Symmetry

Remark: Celestial / flat space holography

Bulk Mink ${ }^{1,3}$
4D $S L(2, \mathbb{C})$ Lorentz
4D superrotations
4D supertranslations

> 4D \mathcal{S}-matrix
> \langle out $| \mathcal{S} \mid$ in \rangle

$$
\omega, \vec{p}, \ell
$$

Boundary $\mathcal{C} S^{2}$
2D global conformal
2D local conformal
2D Kac-Moody

2D conformal correlator $\left\langle\mathcal{O}_{1}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}\left(z_{n}, \bar{z}_{n}\right)\right\rangle$
$(z, \bar{z}), \Delta=h+\bar{h}, J=h-\bar{h}$

