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Gravitational Wave

Gravitational Wave Memory Effect

A subtle DC effect: passage of gravitational waves (GWs) produces a permanent
shift in the relative positions of a pair of inertial detectors.

Linear memory [Zeldovich, Polnarev ’74][Braginsky, Thorne ’87]· · ·
Arises from the non-oscillatory motion of a source, especially due to unbound
masses

E.g. mass/neutrino ejection in supernovas/gamma-ray bursts

Nonlinear memory [Christodoulou ’91]· · ·
Arises from the GWs produced by GWs

Produced by all sources of GWs

Allows us to probe one of the most nonlinear features of GR
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Gravitational Wave

Nonlinear memory from binary black-hole mergers

The wave no longer returns to the zero-point of its oscillation.
This growing-offset is called the memory.
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Gravitational Wave

Detection

The memory effect is harder to see
than gravity waves themselves but
has a decent chance of being
measured in the coming decades

A variety of methods of detection of
the memory effect has been
proposed at LIGO [Lasky et al.], via a
pulsar timing array [van Haasteren,

Levin], etc.

5 / 20



Linear Memory

Linear Memory

6 / 20



Linear Memory

Metric of flat Minkowski space in retarded coordinates (u = t− r) near I+:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

Metric that is asymptotic to, but not exactly equal to, the flat metric?

Work in Bondi coordinates/gauge (u, r, z, z̄), ΘA = (z, z̄):

ds2 = −Udu2 − 2e2βdudr + gAB

(
dΘA +

1

2
UAdu

)(
dΘB +

1

2
UBdu

)
grr = grA = 0: local diffeomorphism invariance

Impose asymptotic flatness at large r with fixed (u, z, z̄) - boundary falloff
conditions on the metric components:

U = 1− 2mB

r
+O(

1

r2
), β = O(

1

r2
),

UA =
1

r2
DBCBA +O(

1

r3
), gAB = r2γAB + rCAB +O(1)

where γAB is the two-dimensional metric on the celestial sphere, CS2,
DA is the covariant derivative with respect to γAB .
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Linear Memory

Natural choice made by Bondi, van der Burg, Metzner, and Sachs (BMS):

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄

+
1

r

(
4

3
(Nz + u∂zmB)− 1

4
∂z(CzzC

zz)

)
dudz + c.c.+ · · ·

Near I+, spacetime is flat to leading order, retarded time u = t− r + · · ·

mB , Nz, Czz depend on (u, z, z̄) but not on r

1 mB : Bondi mass aspect (mB = GM for Kerr spacetimes)

2 Nz: angular momentum aspect

3 Czz: perturbation of metric, transverse to direction of propagation of GWs

“Bondi news tensor” Nzz = ∂uCzz
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Linear Memory

Inertial detectors, e.g. eLISA
detectors moving on geodesic orbits

Memory effect characterises a pair
of inertial detectors stationed near
I+ in a region with no Bondi news
(Nzz = ∂uCzz = 0) at both late
and early times

At intermediate times, gravity waves
may pass through, causing
oscillating distortions in their
relative separations, denoted (sz, sz̄)
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Linear Memory

Geodesic deviation equation for a small perturbation around the flat space:

r2γzz̄∂
2
us
z̄ = −Ruzuzsz

(
Ruzuz = −r

2
∂2
uCzz

)
Integrating this equation reveals a DC effect: initial and final separations differ by
(in retarded coordinates)

∆sz̄ =
γzz̄

2r
∆Czzs

z

gravitational memory effect

The difference ∆Czz between initial and final transverse metric components need
not vanish, as flatness does not require Czz = 0.
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Infrared Triangle

The Infrared Triangle

Deep IR physics is extremely rich!
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Infrared Triangle

(I) Memory Effect
Fourier Transform←−−−−−−−−→ Soft Theorem

Braginsky-Thorne formula for the
gravitational memory effect

(Scattering of black holes)
[V. Braginsky, K. S. Thorne ’87]

Weinberg soft graviton theorem
(Scattering of elementary particles)

[S. Weinberg ’65]
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Infrared Triangle

Memory Effect
Fourier Transform←−−−−−−−−−−→ Soft Theorem

δhTTij = δ

(∑
A

4PAi P
A
j

k ·PA

)TT
(8πG)1/2

∑
n

εµνp
µ
np
ν
n

q · pn

Replace the four-momenta PAi of colliding stars or black holes with the
four-momenta pµn of soft graviton

Account for the different conventions for Newton’s constant G and
normalisation

Substitute the graviton momentum q with its energy ω times the unit null
vector k via q = ωk

Act with a Fourier transform
∫
dt eiωt on the Weinberg momentum-space

formula to obtain the Braginsky-Thorne formula
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Infrared Triangle

Memory Effect
Fourier Transform←−−−−−−−−−−→ Soft Theorem

Soft gravitons may seem a bit unphysical, because it takes longer and longer
to measure them as E → 0.

Surprise! Memory effect can be measured in a finite time, because the
Fourier transform of the Weinberg pole is a step function in retarded time.

At very long distances, astrophysical black holes and elementary particles are
both effectively pointlike!

Universality of IR phenomena
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Infrared Triangle

(II) Soft Theorem
Ward Identity←−−−−−−→ Asymptotic Symmetry

Conserved charge Q generate supertranslations. In the quantum theory, Q
commute with the S-matrix:

QS − SQ = 0.

Ward identity
〈out|QS|in〉 ∼Weinberg pole× 〈out|S|in〉

is precisely Weinberg’s soft graviton theorem.
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Infrared Triangle

(III) Asymptotic Symmetry
Vacuum Transition←−−−−−−−−−→ Memory Effect

An array of evenly spaced inertial detectors (black dots) on the sphere CS2

near I+ will be permanently displaced (red arrows) by the passage of
gravitational radiation
A pulse of radiation passing through I+: a domain wall connecting two
diffeomorphic but BMS-inequivalent vacua that are related by an asymptotic
symmetry
Displacements/supertranslations: measurement of the BMS diffeomorphism,
which relates the vacua before and after the passage of the radiation

[Bondi, van der Burg, Metzner, and Sachs ’62]
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Infrared Triangle

Supertranslations [Bondi, van der Burg, Metzner, and Sachs ’62]

LfCzz = f∂uCzz − 2D2
zf

No energy flux or retarded time dependence of the
asymptotic data at early and late times:

∂uC
early
zz = 0 = ∂uC

late
zz

BMS vacuum transition: early and late geometries
are related by a supertranslation

∆Czz = C late
zz − Cearly

zz = −2D2
zf,

f = LfC(z, z̄)

C(z, z̄) is the Goldstone boson of spontaneously
broken supertranslation invariance.
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Infrared Triangle

∆Czz = C late
zz − Cearly

zz = −2D2
zf,

where

f =

∫
d2w γww̄G(z, z̄;w, w̄)

(∫ uf

ui

du Tuu(w, w̄) + ∆mB

)
uu stress tensor:

Tuu =
1

4
NzzN

zz + 4πG lim
r→∞

(
r2TRuu

)
Green’s function:

G(z, z̄;w, w̄) =
1

π
sin2 ∆Θ

2
log

(
sin2 ∆Θ

2

) (
sin2 ∆Θ

2
=

|z − w|2

(1 + zz̄)(1 + ww̄)

)

with ∆Θ the angle on CS2 between (z, z̄) and (w, w̄)
Change in proper distance between the detectors:

∆L =
r0

2L0

[
∆Czz(z0, z̄0)δz2 + ∆Cz̄z̄(z0, z̄0)δz̄2

]
supertranslation induced by GWs passing through I+

Memory Effect
Vacuum Transition←−−−−−−−−−−→ Asymptotic Symmetry
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Infrared Triangle

Remark: Celestial / flat space holography
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Thanks!
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